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Abstract——High-density lipoproteins (HDL) pos-
sess key atheroprotective biological properties, in-
cluding cellular cholesterol efflux capacity, and anti-
oxidative and anti-inflammatory activities. Plasma
HDL particles are highly heterogeneous in physico-
chemical properties, metabolism, and biological activ-
ity. Within the circulating HDL particle population,
small, dense HDL particles display elevated cellular
cholesterol efflux capacity, afford potent protection of
atherogenic low-density lipoprotein against oxidative
stress and attenuate inflammation. The antiathero-
genic properties of HDL can, however be compromised
in metabolic diseases associated with accelerated ath-
erosclerosis. Indeed, metabolic syndrome and type 2
diabetes are characterized not only by elevated car-
diovascular risk and by low HDL-cholesterol (HDL-C)
levels but also by defective HDL function. Functional
HDL deficiency is intimately associated with alter-
ations in intravascular HDL metabolism and struc-
ture. Indeed, formation of HDL particles with attenu-
ated antiatherogenic activity is mechanistically

related to core lipid enrichment in triglycerides and
cholesteryl ester depletion, altered apolipoprotein A-I
(apoA-I) conformation, replacement of apoA-I by se-
rum amyloid A, and covalent modification of HDL pro-
tein components by oxidation and glycation. Deficient
HDL function and subnormal HDL-C levels may act
synergistically to accelerate atherosclerosis in meta-
bolic disease. Therapeutic normalization of attenu-
ated antiatherogenic HDL function in terms of both
particle number and quality of HDL particles is the
target of innovative pharmacological approaches to
HDL raising, including inhibition of cholesteryl ester
transfer protein, enhanced lipidation of apoA-I with
nicotinic acid and infusion of reconstituted HDL or
apoA-I mimetics. A preferential increase in circulating
concentrations of HDL particles possessing normal-
ized antiatherogenic activity is therefore a promising
therapeutic strategy for the treatment of common met-
abolic diseases featuring dyslipidemia, inflammation,
and premature atherosclerosis.

I. Introduction

According to the recent estimates of the World Health
Organization, approximately one-third of all deaths
(16.7 million people) around the globe resulted from
cardiovascular (CV1) disease in 2002 (World Health Or-
ganization, 2004). As shown in the recent INTER-
HEART study, which enrolled 29,972 subjects in 52
countries worldwide, the most strongly predictive CV
risk factors for myocardial infarction were dyslipidemia,
smoking, hypertension, diabetes, abdominal obesity,
psychosocial factors, consumption of fruits, vegetables,
and alcohol, and lack of regular physical activity (Yusuf
et al., 2004). Collectively, these factors accounted for

most (�90%) of the risk of myocardial infarction in both
sexes and at all ages in all regions.

Atherosclerosis represents the pathological process
that typically underlies CV morbidity and mortality,
formation of plaques in the intima and media of the
arterial wall. Such atherosclerotic plaques result from
the progressive accumulation of cholesterol and diverse
lipids in native and oxidized forms, extracellular matrix
material, and inflammatory cells. Atherogenic dyslipide-
mia, a highly prominent CV risk factor, is intimately
associated with premature atherosclerosis and corre-
sponds to an imbalance between excess circulating lev-
els of cholesterol in the form of pro-atherogenic apoli-
poprotein (apo) B-containing lipoproteins compared with
subnormal levels of antiatherogenic apoA-I-containing
lipoproteins (Fig. 1). Indeed, apoB is the predominant
protein component of proatherogenic, cholesterol-rich
low-density lipoprotein (LDL), triglyceride (TG)-rich
very-low density lipoproteins (VLDL), VLDL remnants

1 Abbreviations: CV, cardiovascular; apo, apolipoprotein; LDL,
low-density lipoprotein(s); TG, triglyceride(s); VLDL, very low-den-
sity lipoprotein(s); IDL, intermediate-density lipoprotein(s); HDL,
high-density lipoprotein(s); LDL-C, LDL-cholesterol; HDL-C, HDL-
cholesterol; CHD, coronary heart disease; MetS, metabolic syn-
drome; CAD, coronary artery disease; LOOH, lipid hydroperoxide(s);
PL, phospholipid(s); NOS, nitric oxide synthase; oxLDL, oxidized
LDL; CRP, C-reactive protein; RCT, reverse cholesterol transport;
CE, cholesteryl ester; LCAT, lecithin/cholesterol acyltransferase;
PAF-AH, platelet-activating factor-acetyl hydrolase; PON 1, para-
oxonase 1; GSPx, glutathione selenoperoxidase; SAA, serum amyloid
A; LpA-I, lipoprotein particles containing only apoA-I; LpA-I/A-II,
lipoprotein particles containing both apoA-I and apoA-II; ABC, ATP-
binding cassette transporter; PLTP, phospholipid transfer protein;
CETP, cholesteryl ester transfer protein; SR-BI, scavenger receptor
type BI; HL, hepatic lipase; ROS, reactive oxygen species; TNF-�,
tumor necrosis factor-�; IL, interleukin; rHDL, reconstituted HDL;
S1P, sphingosine-1-phosphate; hs, high sensitivity; FH, familial hy-
percholesterolemia; NEFA, nonesterified fatty acid(s); IMT, intima-
media thickness; VA-HIT, Veterans Affairs High-Density Lipopro-
tein Cholesterol Intervention Trial; AFREGS, Armed Forces
Regression Study; BIP, Bezafibrate Infarction Prevention Trial;
HATS, HDL-Atherosclerosis Treatment Study; ARBITER, Arterial
Biology for the Investigation of the Treatment Effects of Reducing
Cholesterol; JTT-705, S-[2-([[1-(2-ethylbutyl)cyclohexyl]carbonyl]-
amino)phenyl]2-methylpropanethioate; FIELD, Fenofibrate Inter-
vention and Event Lowering in Diabetes; REVERSAL, Reversal of
Atherosclerosis with Aggressive Lipid Lowering.

FIG. 1. Atherogenic dyslipidemia as an imbalance between circulating
levels of proatherogenic apoB-containing lipoproteins and antiathero-
genic apoA-I-containing lipoproteins.
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and intermediate-density lipoprotein (IDL), whereas
apoA-I is the major protein component of antiathero-
genic high-density lipoprotein (HDL). In the INTER-
HEART study, dyslipidemia was assessed as an elevated
ratio of plasma levels of proatherogenic apoB to anti-
atherogenic apoA-I (�5:1) (Yusuf et al., 2004), and as
such, represented a direct estimate of atherogenic po-
tential in any individual.

Elevated circulating concentrations of LDL-choles-
terol (LDL-C) occur frequently as hypercholesterolemia,
a common form of atherogenic dyslipidemia (Wilson,
1990). LDL is the major vehicle for transport of choles-
terol not only to peripheral tissues but also to the arte-
rial wall (Lusis, 2000); indeed, ionic interaction of posi-
tively charged domains of apoB with negatively charged
proteins of the extracellular matrix, including proteogly-
cans, collagen, and fibronectin, leads to intimal reten-
tion of apoB-containing lipoproteins, a major initiating
factor in atherogenesis (Khalil et al., 2004).

Among factors other than LDL-C that are associated
with dyslipidemia, a low level of HDL-cholesterol
(HDL-C) is now most recognized (Gotto and Brinton,
2004). Several prospective epidemiological studies, in-
cluding the Framingham Heart Study, US Physicians’
Health Study, Prospective Cardiovascular Münster
(PROCAM) Study, and Atherosclerosis Risk in Commu-
nities (ARIC) Study, have found that low serum HDL-C
concentrations (defined as �40 mg/dl in both sexes or as
�40 mg/dl in men and �50 mg/dl in women) (Chapman
et al., 2004)) constitute an independent risk factor for
coronary heart disease (CHD) in both nondiabetic and
diabetic subjects (Maron, 2000; Sharrett et al., 2001;
Gotto and Brinton, 2004). Moreover, low HDL-C is char-
acteristic of atherogenic dyslipidemia and increased CV
risk in patients with metabolic diseases such as type 2
diabetes and metabolic syndrome (MetS). In this con-
text, it is of special relevance that the World Health
Organization has estimated that the population of indi-
viduals with type 2 diabetes will have increased world-
wide to 250 millions or more by 2025 (World Health
Organization, 2004).

Prospective studies have revealed that CHD risk is
elevated by 3% in women and 2% in men for each dec-
rement of 1 mg/dl in HDL-C (Wilson, 1990). Conversely,
a decreased risk of CV events is frequently observed in
subjects with elevated HDL-C levels (Maron, 2000; Dog-
gen et al., 2004; Gotto and Brinton, 2004); in addition,
high concentrations of HDL-C (�60 mg/dl) are typically
associated with longevity (Barzilai et al., 2003; Barter,
2004). The prevalence of low HDL-C levels can vary from
20% in a general population to up to 60% in patients
with established CHD (Franceschini, 2001). Not only are
low HDL-C levels associated with an increased incidence
of CHD but also with a greater risk for carotid athero-
sclerosis and ischemic stroke mortality and with a more
aggressive progression of angiographically defined coro-
nary artery disease (CAD) (Maron, 2000; Gotto and

Brinton, 2004). Finally, it is noteworthy that in the
recent Myocardial Ischemia Reduction with Aggressive
Cholesterol Lowering (MIRACL) trial in patients with
acute coronary syndromes treated with atorvastatin,
baseline HDL-C levels, rather than those of LDL-C,
predicted the occurrence of CV events (Olsson et al.,
2005).

A. Inflammation and Oxidative Stress in the
Progression of Atherosclerosis

The imbalance between circulating levels of choles-
terol transported in HDL relative to that in apoB-con-
taining particles is intimately associated with induction
of both endothelial dysfunction and oxidative stress in
the arterial wall, which are in turn closely related to
inflammation (Chisolm and Steinberg, 2000; Lusis,
2000); as a result, dyslipidemia, oxidative stress, and
inflammation are closely interrelated in the develop-
ment of atherosclerosis.

Oxidative stress is defined as an imbalance between
prooxidant and antioxidant factors in favor of prooxi-
dants and is central to the pathophysiology of athero-
sclerosis and CV disease (Fig. 2). Analysis of plaque
composition has revealed products of protein and lipid
oxidation, such as oxidized, chlorinated, and nitrated
amino acids, lipid hydroperoxides (LOOH), short-chain
aldehydes, oxidized phospholipids (PL), F2�-isopros-
tanes, and oxysterols, thereby suggesting the presence
of local oxidative stress (Heinecke, 1998). The preferen-
tial retention of LDL in the arterial wall makes this
lipoprotein a major substrate for oxidation by prooxi-
dants produced by arterial wall cells. Various oxidative
systems potentially contribute to LDL oxidation in vivo,
and these include NAD(P)H oxidases, xanthine oxidase,
myeloperoxidase, uncoupled nitric oxide synthase
(NOS), lipoxygenases, and the mitochondrial electron
transport chain (Madamanchi et al., 2005; Mueller et al.,
2005). Accordingly, reactive oxygen, chlorine and nitro-
gen species, and lipid-derived free radicals are major
prooxidants involved in the formation of oxidized LDL

FIG. 2. Oxidative stress as an imbalance between prooxidant and
antioxidant factors in favor of prooxidants. LPO, lipoxygenase; MPO,
myeloperoxidase.
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(oxLDL) in vivo. Significantly, production of both chlo-
rine- and nitrogen-containing prooxidants is increased
at sites of inflammation (Heinecke, 1998), suggesting
that focal inflammation significantly contributes to the
initiation of LDL oxidation at early stages of plaque
formation. Consistent with the role of oxidative stress
and oxidative modification of LDL in atherosclerosis,
both urinary levels of F2�-isoprostanes, currently the
most robust and integrative marker of oxidative stress
in vivo in humans (Morrow, 2005) and plasma levels of
oxLDL constitute strong and independent risk factors
for CHD (Schwedhelm et al., 2004; Meisinger et al.,
2005).

Inflammation is a systemic body response aimed to
decrease the toxicity of harmful agents and repair dam-
aged tissue. Chronic inflammation, which may be mea-
sured as circulating levels of an acute-phase protein,
such as C-reactive protein (CRP), represents a major CV
risk factor (Ridker et al., 2004b; Willerson and Ridker,
2004; Verma et al., 2005). A key feature of the inflam-
matory response involves activation of phagocytic cells
involved in host defense, which produce an oxidative
burst of reactive oxygen, chlorine, and nitrogen species,
with subsequent creation of a highly prooxidative envi-
ronment to combat invading pathogens. Local and sys-
temic infections, arterial wall injury, and excessive re-
tention of LDL may all potentiate activation of
macrophages in the arterial wall, thereby triggering ex-
cessive production of prooxidant species (Hansson,
2005). As a result, oxidation of proteoglycan-bound LDL
may occur in the extracellular space of the arterial in-
tima (Memon et al., 2000).

OxLDL particles exhibit multiple atherogenic proper-
ties, which include uptake and accumulation in macro-
phages, as well as proinflammatory, immunogenic, apopto-
tic, and cytotoxic activities (Chisolm and Steinberg, 2000).
In contrast to unmodified LDL, oxLDL is taken up through
macrophage scavenger receptor pathways that are not
down-regulated by excess ligand and lead to the formation
of cholesterol-loaded foam cells, characteristic components
of atherosclerotic plaques. The proinflammatory activities
of oxLDL include chemoattractant action on circulating
monocytes, induction of the expression of adhesion mole-
cules on endothelial cells, promotion of monocyte differen-
tiation into macrophages, induction of the production and
release of proinflammatory cytokines and chemokines
from macrophages, and inhibition of macrophage motility
(Chisolm and Steinberg, 2000; Lusis, 2000). Most of the
proinflammatory properties of oxLDL arise from products
of LDL lipid peroxidation, such as 1-palmitoyl-2(5-oxova-
leroyl)-sn-glycero-3-phosphorylcholine, 1-palmitoyl-2-glut-
aroyl-sn-glycero-3-phosphorylcholine, cholesteryl linoleate
hydroperoxide, 7�-hydroperoxycholesterol, hydroxyoctade-
cadienoic acid, and 4-hydroxynonenal (Chisolm and Stein-
berg, 2000; Lusis, 2000; Van Lenten et al., 2001a). As a
result, LDL oxidation further propagates the inflamma-
tory process in the arterial wall, thereby accelerating

atherogenesis (Lusis, 2000). Atherosclerosis can therefore
be regarded as a chronic inflammatory disease of the arte-
rial wall mediated by oxLDL in concert with a spectrum of
additional proinflammatory agents.

HDL particles are distinguished from atherogenic
apoB-containing lipoproteins by their capacity to exert a
wide spectrum of antiatherogenic biological activities,
including 1) their capacity to mediate cellular choles-
terol efflux by acting as primary acceptors, thereby fa-
cilitating reverse cholesterol transport (RCT) from the
arterial wall and peripheral tissues to the liver, 2) the
protection of LDL against oxidative stress, 3) anti-in-
flammatory actions on arterial wall cells, and 4) anti-
apoptotic, 5) vasodilatory, 6) antithrombotic, and 7) anti-
infectious activities. In this review, we will consider
recent evidence for the heterogeneity of the atheropro-
tective properties of HDL particle subpopulations with
emphasis on their ability both to protect against accu-
mulation of lipids and to attenuate oxidative stress and
inflammation in the arterial wall. Furthermore, new
findings on functionally defective HDL will be discussed
in the context of metabolic diseases associated with ele-
vated CV risk; these data indicate that the potent anti-
atherogenic activities of small, dense HDL particles are
impaired in the dyslipidemic and inflammatory state
associated with type 2 diabetes and MetS. Finally, we
will critically appraise innovative therapeutic strategies
to normalize defective functionality of small, dense HDL
particles; these exciting developments open new hori-
zons for the treatment of atherogenic dyslipidemia in
metabolic disease.

II. Functional High-Density Lipoprotein

A. Structure, Composition, and Heterogeneity

Functional plasma HDL are spherical or discoidal par-
ticles of high hydrated density (1.063–1.21 g/ml) due to
elevated protein content (�30% by weight) compared
with other lipoproteins (Fig. 3) (Asztalos and Schaefer,
2003; Barter et al., 2003b). Discoidal HDL are small
particles consisting primarily of apoA-I embedded in a
lipid monolayer constituted of PL and free cholesterol
(Segrest et al., 1999, 2000). Spherical HDL are larger
and additionally contain a hydrophobic core formed by
cholesteryl esters (CE) and small amounts of TG. ApoA-I
(molecular mass 28 kDa) is the major structural HDL
apolipoprotein and accounts for �70% of total HDL pro-
tein, whereas the second major HDL apolipoprotein,
apoA-II, represents �20%. Minor HDL protein compo-
nents (typically �10% of the HDL protein moiety) in-
clude apoE, apoA-IV, apoA-V, apoJ, apoC-I, apoC-II, and
apoC-III (Asztalos and Schaefer, 2003; Barter et al.,
2003b; Karlsson et al., 2005). In small discoidal HDL,
two molecules of apoA-I adopt a “double belt” orientation
with their helixes oriented parallel to the plane of the
disc and perpendicular to the lipid acyl chains in such a
way that they wrap around the lipid bilayer disc forming
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two stacked rings in an antiparallel orientation (Segrest
et al., 1999, 2000; Silva et al., 2005); furthermore, apoA-I
molecules appear to slide in relation to each other be-
tween two stable conformations (Silva et al., 2005).
Plasma HDL particles also carry enzymes involved in
lipid metabolism, including lecithin/cholesterol acyl-
transferase (LCAT), enzymes with plausible antioxida-
tive activities, such as platelet-activating factor-acetyl
hydrolase (PAF-AH, also called lipoprotein-associated
phospholipase A2), paraoxonase 1 (PON1) and glutathi-
one selenoperoxidase (GSPx) (Navab et al., 2004b), and
other proteins and peptides, such as serum amyloid A
(SAA), a major positive acute-phase reactant (Uhlar and
Whitehead, 1999), �-1-antitrypsin, a potent inhibitor of
serine proteinases (Karlsson et al., 2005), or amyloid-�,
the principal constituent of senile plaques in Alzhei-
mer’s disease (Kontush, 2004).

Plasma HDL particles are highly heterogeneous in
their physicochemical properties, metabolism, and bio-
logical activity (Fig. 3) (Asztalos and Schaefer, 2003;
Barter et al., 2003b). Such heterogeneity results from
differences in relative contents of apolipoproteins and
lipids in HDL and is intimately related to the amphi-
pathic helical structure of human apoA-I (Reschly et al.,
2002; Maiorano et al., 2004); these helixes possess a
hinge domain that allows apoA-I to switch between two
conformations corresponding to HDL particles of differ-
ent size. When fractionated by ultracentrifugation, hu-
man HDL is typically separated into two major subfrac-
tions, HDL2 (d 1.063–1.125 g/ml) and HDL3 (d 1.125–
1.21 g/ml) (Chapman et al., 1981). Nondenaturing
polyacrylamide gradient gel electrophoresis has been

used to separate HDL into five distinct subpopulations
of decreasing size, HDL2b, 2a, 3a, 3b, and 3c (Anderson
et al., 1977); equivalent subpopulations can be quanti-
tatively isolated using isopycnic density gradient ultra-
centrifugation (Fig. 3) (Tall et al., 1982; Goulinet and
Chapman, 1997; Guerin et al., 2000a). Other separation
methods, such as two-dimensional electrophoresis, allow
identification of more than 10 HDL subspecies in which
spherical �-HDL predominate (Asztalos et al., 1993;
Asztalos and Schaefer, 2003); each subspecies may, how-
ever, be heterogeneous in physicochemical properties, as
in the case of ultracentrifugally isolated subfractions.
HDL can also be immunoseparated on the basis of apo-
lipoprotein composition into particles containing only
apoA-I (LpA-I) and both apoA-I and apoA-II (LpA-I/A-II)
(Duriez and Fruchart, 1999). In most human subjects,
apoA-I is distributed approximately equally between
LpA-I and LpA-I/A-II, whereas virtually all apoA-II is in
LpA-I/A-II. Finally, ultrafiltration (Atmeh, 1990; Atmeh
and Abd Elrazeq, 2005) and size-exclusion chromatogra-
phy (Nanjee and Brinton, 2000) allow isolation of small,
protein-rich HDL particles of low molecular mass
(40–70 kDa). Given the complexity of HDL particle het-
erogeneity, small, dense HDL will be defined for present
purposes as lipid-poor and protein-rich discoidal and
spherical HDL particles of small size (�9 nm), low mo-
lecular mass (�200 kDa), and high density (1.125–1.24
g/ml). Depending on the fractionation method, small,
dense HDL may include HDL3a, 3b, and 3c and very
high-density lipoprotein separated by ultracentrifuga-
tion and pre-�-HDL separated by gradient gel electro-
phoresis.

FIG. 3. Heterogeneity in the physicochemical properties of normal functional HDL in healthy normolipidemic subjects (Blanche et al., 1981; Barter
et al., 1999; Kontush et al., 2003).
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On a particle basis, HDL are the most numerous per
unit volume of plasma and are present at the highest
(micromolar) levels compared with other lipoproteins.
Concentrations of major HDL2 and HDL3 subfractions
typically are in the range of 2 to 6 �M corresponding to
50 to 200 mg total mass/dl (Kontush et al., 2003, 2004,
2005; Hansel et al., 2004; Nobecourt et al., 2005).

The clinical relevance of circulating levels of individ-
ual HDL subfractions to atherosclerosis and CV disease
is, however, unclear. Concentrations of HDL2-C and
HDL3-C as estimates for plasma levels of the two major
HDL subfractions were measured in several studies,
which differed in separation methods (polyanion precip-
itation versus ultracentrifugation). Conflicting results
were obtained, with evidence that either HDL2-C or
HDL3-C constitutes a strong predictor of CHD or CV
risk factors (Johansson et al., 1991; Drexel et al., 1992,
1994, 1996; Skinner, 1994; Robins et al., 2001; Alagona
et al., 2002; Barter et al., 2003a; Yu et al., 2003; Desai et
al., 2005). Furthermore, plasma levels of either large
(Rosenson et al., 2002) or small (Mackey et al., 2002)
HDL were reported to be associated with the progression
of coronary atherosclerosis. Similarly controversial is
the clinical significance of pre-�-HDL, pre-�-HDL, and
LpA-I/A-II levels. By contrast, plasma levels of �1-HDL
and LpA-I are typically associated with protection from
atherosclerosis (Duriez and Fruchart, 1999; Asztalos et
al., 2003; Asztalos and Schaefer, 2003).

Discordance in these data reflects complex relation-
ships between HDL subfractions separated by different
methods. For example, immunoisolated LpA-I/A-II is
found predominantly in the HDL3 density range,
whereas LpA-I is a prominent component of both HDL2
and HDL3 (Duriez and Fruchart, 1999). On the other
hand, �-migrating HDL predominate in both HDL2 and
HDL3 subfractions, whereas pre-�-HDL coisolates with
small, dense HDL particles (Asztalos and Schaefer,
2003). Another important example concerns ultracen-
trifugally isolated small, dense HDL3c, which does not
precisely correspond to small HDL subpopulations as
determined by other methods. Human HDL3c repre-
sents a minor subfraction accounting for approximately
6% of total HDL mass and 10% of apoA-I (Kontush et al.,
2003, 2004, 2005; Hansel et al., 2004; Nobecourt et al.,
2005). In two-dimensional electrophoresis, HDL3c re-
veals further heterogeneity and produces multiple sig-
nals corresponding to small �3-, pre�-3- and pre�-1-
HDL (S. Chantepie, A. Kontush, and M. J. Chapman,
unpublished data). By contrast, small HDL �3, pre�-3,
and pre�-1 subfractions measured by two-dimensional
electrophoresis in whole plasma account for approxi-
mately 37, 4, and 12% of apoA-I, respectively (Asztalos
et al., 2004a); moreover, �3 together with �2 represent
two major HDL subfractions in normolipidemic subjects.
It is essential to emphasize that routine clinical mea-
surement of plasma HDL-C primarily reflects levels of

large, cholesterol-rich HDL particles and frequently
lacks sensitivity to detect small cholesterol-poor HDL.

B. Metabolism

Spherical plasma HDL are mature particles gener-
ated by intravascular processes from lipid-free apoA-I or
lipid-poor pre-�-HDL (Fig. 4) (Rye and Barter, 2004).
These small HDL precursors are produced as nascent
HDL by the liver or intestine, are also released as sur-
face fragments from lipolysed TG-rich lipoproteins
(VLDL and chylomicrons), and finally may be generated
during the interconversion of HDL3 and HDL2 (von
Eckardstein et al., 2001). Small nascent HDL are unsta-
ble and readily acquire lipids (Atmeh and Abd Elrazeq,
2005); their initial lipidation occurs at cellular mem-
branes via the ATP-binding cassette transporter (ABC)
A1-mediated efflux of cholesterol and PL from cells (Fig.
4) (Oram, 2002). ABCA1 is a major player in HDL me-
tabolism; indeed, genetic defects in ABCA1 as occur in
Tangier disease may result in low HDL-C levels, with
cholesterol accumulation in peripheral tissues and pre-
mature atherosclerosis (Oram, 2002).

FIG. 4. Intravascular HDL particle remodeling and metabolism in
normolipidemia. Spherical plasma HDL are generated from lipid-free
apoA-I or lipid-poor pre-�-HDL, which are produced as nascent HDL by
the liver or intestine but can also be released as surface fragments from
lipolysed TG-rich lipoproteins and/or during the interconversion of HDL3
and HDL2. Initial lipidation of small nascent HDL occurs at cellular
membranes via the ABCA1-mediated efflux of cholesterol and PL from
cells. Subsequent LCAT-mediated cholesterol esterification generates
large spherical HDL2 particles, which undergo further remodeling via
particle fusion and surface remnant transfer mediated by PLTP. Large
HDL2 can be converted in turn to small HDL3 upon CETP-mediated
transfer of CE from HDL to apoB-containing lipoproteins, upon SR-BI-
mediated selective uptake of CE by the liver and steroidogenic organs,
and HL- and endothelial lipase-mediated hydrolysis of TG. When CETP-
mediated transfer of CE occurs between HDL and TG-rich lipoproteins,
TG-rich HDL are generated, which can be further hydrolyzed by HL to
small, TG-rich HDL particles. The concerted action of CETP and HL
promotes reduction in HDL size, formation of lipid-poor HDL particles,
and shedding from HDL of lipid-free apoA-I, which can interact with
ABCA1 in the next lipidation cycle. HDL lipids are catabolized either
separately from HDL proteins by selective uptake or via CETP transfer or
as holoparticles together with HDL proteins primarily in the liver via
uptake through LDL receptors for apoE-containing HDL and through
hitherto unidentified receptors for HDL holoparticles. EL, endothelial
lipase; FC, free cholesterol; HDL-R, HDL holoparticle receptor; LDL-R,
LDL receptor.
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Subsequent LCAT-mediated esterification of cell-de-
rived cholesterol generates large spherical HDL2 parti-
cles with a neutral lipid core of CE and TG (Jonas, 2000);
such particles undergo further remodeling via particle
fusion and surface remnant transfer mediated by phos-
pholipid transfer protein (PLTP) (van Tol, 2002). Large
HDL2 can be converted in turn to small HDL3 upon
cholesteryl ester transfer protein (CETP)-mediated
transfer of CE from HDL to apoB-containing lipopro-
teins, upon scavenger receptor type BI (SR-BI)-mediated
selective uptake of CE by the liver and steroidogenic
organs and hepatic lipase (HL) and upon endothelial
lipase-mediated hydrolysis of core TG (Fig. 4) (von Eck-
ardstein et al., 2001). When CETP-mediated transfer of
CE occurs between HDL and TG-rich lipoproteins, TG-
rich HDL are generated (Le Goff et al., 2004), which can
be further hydrolyzed by HL to small, TG-rich HDL
particles (Santamarina-Fojo et al., 2004). The concerted
action of CETP and HL promotes reduction in HDL size,
formation of lipid-poor HDL particles and shedding from
HDL of lipid-free apoA-I, which can interact with
ABCA1 in the next lipidation cycle (Clay et al., 1992).
HDL lipids are catabolized either separately from HDL
proteins by selective uptake or via CETP transfer or as
holoparticles primarily in the liver, via uptake through
LDL receptors for apoE-containing HDL and through
hitherto unidentified receptors for HDL holoparticles.

C. Biological Activities

HDL particles possess multiple antiatherogenic activ-
ities (Stein and Stein, 1999; Nofer et al., 2002; Assmann
and Nofer, 2003; Assmann and Gotto, 2004; Navab et al.,
2004b). The central role of HDL in cellular cholesterol
efflux and RCT is considered to form a basis for the
capacity of HDL to attenuate atherogenesis (von Eck-
ardstein et al., 2001; Nissen et al., 2003). However,
compelling evidence has emerged that additional dimen-
sions of the antiatherogenic action of HDL may be of
major physiological and pathological relevance (Nofer et
al., 2002; Assmann and Nofer, 2003; Assmann and
Gotto, 2004; Navab et al., 2004b).

1. Cholesterol Efflux Capacity. The cholesterol ef-
flux capacity of HDL particles is related to their ability
to remove cholesterol from membranes of peripheral
cells and particularly macrophages and foam cells via
interaction with the ABCA1 and ABCG1 transporters
and/or SR-BI receptor. Lipid-free apoA-I, apoA-II, apoE,
and other HDL apolipoproteins induce fast, saturable,
unidirectional and LCAT-independent efflux of cellular
cholesterol and PL (von Eckardstein et al., 2001; Lewis
and Rader, 2005); as a result, HDL particles efficiently
acquire cholesterol in the extravascular compartment
(Nanjee et al., 2001). ApoA-I is thought to play a central
role in cholesterol transport from macrophages to the
liver, consistent with the demonstration of accelerated
RCT in mice overexpressing human apoA-I (Zhang et al.,
2003); apoA-II is also able to act as as a primary acceptor

and to efficiently remove cholesterol from macrophages
in vivo (Rotllan et al., 2005).

Apolipoprotein-mediated lipid efflux involves specific
interactions with membrane proteins, desorption of
membrane lipids from caveolae, lipidation of lipid-free
apolipoproteins and production of small, lipid-poor HDL
(Rothblat et al., 1999; von Eckardstein et al., 2001).
Lipid-free apolipoproteins remove cholesterol and PL
from macrophages, aortic smooth muscle cells, and nor-
mal human skin fibroblasts but not from fibroblasts of
patients with Tangier disease (Brousseau et al., 2000;
Oram, 2000). Defective ABCA1 transporter function in
Tangier disease has provided clear evidence that ABCA1
has a central role in lipid efflux mediated by lipid-poor
apolipoproteins. In support of this mechanism, apoA-I-
mediated cholesterol efflux is severely decreased by in-
hibition of ABCA1 with either antisense oligonucleo-
tides or pharmacological compounds but is increased by
the overexpression of ABCA1 (Oram, 2002). Thus,
ABCA1 is a pivotal regulator of cellular cholesterol ef-
flux and of the lipidation of apoA-I, a key step in forma-
tion of mature, spherical HDL particles.

ABCA1 has two highly conserved cytoplasmic ATP
binding cassettes and two transmembrane domains,
each of which consists of six membrane-spanning seg-
ments (Langmann et al., 1999; Santamarina-Fojo et al.,
2000). It has been suggested that ABCA1 forms a chan-
nel within the plasma membrane through which choles-
terol and PL are transferred (“flopped”) from the inner to
the outer leaflet of the plasma bilayer membrane
(Hamon et al., 1997, 2000). There the lipids may be
picked up by lipid-free apolipoproteins or lipid-poor par-
ticles, which bind to ABCA1 (Oram et al., 2000; Wang et
al., 2000).

In addition to ABCA1, there are several other sterol-
regulated ABC transporters, including ABCG1 and
ABCG4, which are involved in cholesterol efflux from
macrophages to mature HDL2 and HDL3 particles (Na-
kamura et al., 2004; Wang et al., 2004; Kennedy et al.,
2005). Within the plasma membrane, ABCG1 redistrib-
utes cell cholesterol to domains that interact preferen-
tially with mature HDL particles but not with lipid-poor
apolipoproteins (Vaughan and Oram, 2005). The relative
quantitative importance of cholesterol efflux mediated
by ABCA1 compared with ABCG1 in macrophages re-
mains unclear.

In contrast to lipid-free apolipoproteins, lipid-contain-
ing HDL particles induce both specific and nonspecific
forms of cholesterol efflux (von Eckardstein et al., 2001).
Nonspecific cholesterol efflux can be also mediated by
PL vesicles, synthetic cyclodextrins, albumin or par-
tially proteolysed HDL; it is slow, unsaturable, and bi-
directional and thus appears to occur by aqueous diffu-
sion (Rothblat et al., 1999; von Eckardstein et al., 2001).
It has been suggested that SR-BI mediates the bidirec-
tional flux between mature HDL and plasma mem-
branes through the binding of HDL particles and subse-
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quent reorganization of lipids within cholesterol- and
caveolae-rich domains in the plasma membrane (de la
Llera-Moya et al., 1999; Yancey et al., 2004). The PL
content of HDL is an important determinant of such
SR-BI-mediated cholesterol efflux (Yancey et al., 2000).

Another mechanism implicated in HDL-mediated cho-
lesterol efflux is retroendocytosis, i.e., the uptake of
HDL into clathrin-coated endosomes followed by intra-
cellular enrichment with lipids and resecretion (Heeren
et al., 1999; Takahashi and Smith, 1999). Finally, HDL-
mediated cholesterol efflux from macrophages may be
facilitated by apoE secretion (Mazzone, 1996). Indeed,
macrophage-derived apoE can associate with HDL and
improve its cholesterol acceptor properties.

Distinct cholesterol efflux properties of lipid-free and
lipid-containing HDL are indicative of functional heter-
ogeneity of HDL particles. Indeed, a decrease in the lipid
content of HDL is generally thought to increase its ca-
pacity to remove cellular cholesterol (Ohta et al., 1995;
Sasahara et al., 1998); small, dense, lipid-poor, protein-
rich HDL particles are therefore considered to represent
more efficient cholesterol acceptors compared with their
large, light, lipid-rich, protein-poor counterparts (Aszta-
los et al., 1997). For example, small, lipid-poor HDL
predominate in rabbits expressing human apoA-I; in
parallel, the cholesterol efflux capacity of rabbit serum
increases (Duverger et al., 1996a,b).

Interestingly, pre-�1-HDL, the initial product of
apoA-I lipidation, is not essential for cellular cholesterol
efflux (Sviridov et al., 2002), thereby suggesting that
lipid-free, rather than lipid-poor, apolipoproteins func-
tion as primary cholesterol acceptors (Asztalos et al.,
1997). Lipid-free and/or lipid-poor HDL apolipoproteins
induce cholesterol uptake via interaction with ABCA1;
consistent with this observation, plasma levels of small
pre-�1-HDL particles correlate with serum capacity to
induce ABCA1-mediated cholesterol efflux from J774
macrophages (Asztalos et al., 2005). Conversely, large,
lipid-rich HDL particles appear to represent a better
ligand for cellular uptake of CE mediated by SR-BI
compared with small, lipid-poor HDL (de Beer et al.,
2001; Thuahnai et al., 2004), consistent with the role of
these particles in RCT from peripheral cells to the liver
(von Eckardstein et al., 2001; Asztalos et al., 2005).

2. Antioxidative Activity. HDL antioxidative activity
is typically observed as inhibition of LDL oxidation by
HDL; LDL is thought to represent the major physiolog-
ical target of HDL antioxidative action in vivo (Van
Lenten et al., 2001a; Navab et al., 2004b). HDL is also
able to inhibit generation of reactive oxygen species
(ROS) in vitro under conditions of cell culture (Robbesyn
et al., 2003; Lee et al., 2005) and in vivo in a rabbit model
of acute arterial inflammation (Nicholls et al., 2005b). In
addition, inhibitory actions of HDL on LDL oxidation
have been reported in vitro upon their coincubation
(Parthasarathy et al., 1990) and in vivo upon HDL in-
jection (Klimov et al., 1993). HDL potently protects both

lipid and protein moieties of LDL and inhibits accumu-
lation of various oxidation products in LDL, including
oxidized PL and short-chain aldehydes (Van Lenten et
al., 2001a; Navab et al., 2004b).

The antioxidative activity of HDL is related to the
presence of several apolipoproteins and enzymes with
antioxidative properties in HDL particles. Apolipopro-
teins that possess antioxidative activity include apoA-I,
apoE, apoJ, apoA-II, and apoA-IV. It appears that a
major component of the antioxidative activity of HDL
can be ascribed to apoA-I which can prevent and/or delay
LDL oxidation by removing oxidized PL, including 1-
palmitoyl-2(5-oxovaleroyl)-sn-glycero-3-phosphoryl-
choline and 1-palmitoyl-2-glutaroyl-sn-glycero-3-
phosphorylcholine, from LDL and from arterial wall
cells (Navab et al., 2000a,b). The capacity of apoA-I to
remove oxidized lipids is not specific for arterial wall
cells, because similar effects have been reported for
erythrocytes and astrocytes (Klimov et al., 2001; Ferretti
et al., 2003, 2004). Circulating HDL accumulate LOOH
and have been proposed to function as a “sink” for oxi-
dized lipids (Bowry et al., 1992), ensuring their efficient
elimination from the circulation through the liver.

ApoE possesses established antiatherosclerotic activ-
ity, which is normally ascribed to its lipid transport
properties (Davignon, 2005). However, the action of
apoE goes beyond such activity. Indeed, apoE possesses
distinct antioxidative properties (Miyata and Smith,
1996) and can promote regression of atherosclerosis in-
dependently of lowering plasma cholesterol levels
(Thorngate et al., 2000; Tangirala et al., 2001; Raffai et
al., 2005). HDL-associated apoJ can inhibit oxidation of
LDL by artery wall cells (Navab et al., 1997); in addition,
apoJ is cytoprotective at low physiological levels (Trou-
gakos et al., 2005). The beneficial actions of apoJ may be
related to its ability to maintain integrity of membrane
and lipoprotein lipids via its hydrophobic-binding do-
mains (Jordan-Starck et al., 1992). Antioxidative prop-
erties have also been reported for apoA-II (Boisfer et al.,
2002) and apoA-IV (Ostos et al., 2001). The capacity of
apoA-II to protect LDL from oxidation is, however, ques-
tionable, given the fact that overexpression of human
apoA-II in dyslipidemic mice accelerates atherosclerosis,
increases aortic accumulation of oxLDL, and reduces
antioxidative activity of HDL (Ribas et al., 2004; Rotllan
et al., 2005). Such proatherogenic actions of apoA-II may
be related to the displacement of antiatherogenic apoA-I
and PON1 by apoA-II from HDL particles (Ribas et al.,
2004). Finally, HDL is able to function as a preventive
antioxidant through its capacity to bind transition metal
ions (Kunitake et al., 1992), which in free form are
potent catalyzers of LDL oxidation. Intriguingly, plasma
HDL carry amyloid-� peptide, a major component of
senile neuritic plaques and a strong chelator of transi-
tion metals (Kontush, 2004).

Major HDL enzymes possessing antioxidative activity
are PON1, PAF-AH, LCAT, and GSPx (Van Lenten et
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al., 2001a; Navab et al., 2004b). PON1 is a component of
HDL that is thought to hydrolyze LDL-derived short-
chain oxidized PL once they are formed (Aviram et al.,
1998). PON1 is anchored to lipids via its hydrophobic N
terminus (Josse et al., 2002; Harel et al., 2004); the
association of PON1 with HDL is a prerequisite for
maintaining normal serum activity of the enzyme. HDL
provides the optimal physiological acceptor complex for
PON1, in terms of both stimulating enzyme secretion
and stabilizing the secreted peptide (James and Deakin,
2004); PON1 interaction with apoA-I is critical for en-
zyme stability (Gaidukov and Tawfik, 2005). HDL and,
less efficiently, VLDL but not LDL promote PON1 se-
cretion from cells; the differences between these lipopro-
teins are related to differences in their lipid composition
(Deakin et al., 2005).

PAF-AH and LCAT can also hydrolyze LDL-derived
short-chain oxidized PL; the relationship between the
hydrolyzing activities of PON1, PAF-AH, and LCAT to-
ward oxidized PL remains unclear. Recent data question
the ability of PON1 to hydrolyze oxidized PL and sug-
gest that PAF-AH, rather than PON-1, is the oxidized
PL hydrolase in HDL (Marathe et al., 2003; Connelly et
al., 2005). Consistent with this conclusion, HDL-associ-
ated PAF-AH is thought to play an antiatherogenic role,
in contrast to the LDL-associated enzyme (Quarck et al.,
2001; Tsimihodimos et al., 2003; Zalewski and Macphee,
2005). Indeed, local arterial expression of PAF-AH re-
duces accumulation of oxLDL and inhibits inflamma-
tion, shear stress-induced thrombosis, and neointima
formation in balloon-injured carotid arteries of nonhy-
perlipidemic rabbits (Arakawa et al., 2005).

The antioxidative activity of PON1 purified from hu-
man serum has recently been ascribed to the presence of
detergents or some other unidentified proteins (Teiber et
al., 2004). Interestingly, PON1 has been reported to
catalyze the hydrolysis of a variety of lactones, including
homocysteine thiolactone, suggesting that its native ac-
tivity is as a lactonase (Jakubowski, 2000; Draganov et
al., 2005; Khersonsky and Tawfik, 2005). Plasma levels
of homocysteine are a strong CV risk factor (Duell and
Malinow, 1997); by detoxifying homocysteine thiolac-
tone, PON1 could protect against homocysteinylation, a
post-translational modification of proteins associated
with attenuated biological activity and a potential con-
tributing factor to atherosclerosis.

In addition, HDL-associated PON1 enhances cholesterol
efflux from macrophages via increased HDL binding me-
diated by ABCA1 (Rosenblat et al., 2005). PON1-induced
cellular accumulation of lysophosphatidylcholine, which
stimulates cholesterol efflux via the ABCA1 pathway, may
account for this effect (Hara et al., 1997). One can hypoth-
esize that both lactonase activity and an RCT-related
mechanism may contribute to the antiatherosclerotic ef-
fects of PON1 observed in vivo (Shih et al., 1998; Tward et
al., 2002).

Another HDL enzyme, GSPx, can reduce LOOH to
corresponding hydroxides and thereby detoxify them
(Maddipati and Marnett, 1987; Arthur, 2000; Chen et
al., 2000). LOOH-reducing activity mediated by Met res-
idues of apoA-I and apoA-II has also been reported (Sat-
tler et al., 1994; Garner et al., 1998). Finally, upon HDL
oxidation with peroxynitrite, apoA-I increases genera-
tion of PL core aldehydes that are subsequently hydro-
lyzed by HDL-associated enzymes, such as PAF-AH
and/or PON1, with formation of lysophospholipids
(Ahmed et al., 2001). Such a PAF-AH/PON1-coupled
protective function of apoA-I can effectively divert
proatherogenic LOOH to less harmful products (Van
Lenten et al., 2001a; Tselepis and Chapman, 2002; Na-
vab et al., 2004b).

Apolipoproteins and enzymes with antioxidative ac-
tivities are nonuniformly distributed across HDL sub-
fractions. In vivo PON1 is preferentially associated with
large HDL but can be displaced to small, dense particles
upon ultracentrifugation (Cabana et al., 2003; Kontush
et al., 2003; Bergmeier et al., 2004). The size and shape
of HDL seem to be critical for PON1 binding (Josse et al.,
2002). By contrast, apoJ is associated with a subset of
small HDL, which also contains PON1 (Kelso et al.,
1994). Similarly, LCAT activity (Kontush et al., 2003),
PAF-AH activity (Kontush et al., 2003), and apoA-IV
(Bisgaier et al., 1985) are enriched in small, dense HDL
isolated by ultracentrifugation. As a consequence, HDL
particles are heterogeneous in their antioxidative activ-
ity. Under mild oxidative stress induced by an azo ini-
tiator 2,2�-azobis-(2-amidinopropane) hydrochloride or
Cu2�, the antioxidative activity of HDL subfractions
isolated by density gradient ultracentrifugation against
LDL oxidation increases with increment in density in
the order: HDL2b � HDL2a � HDL3a � HDL3b �
HDL3c, thereby establishing that small, dense HDL act
as potent protectors of LDL from oxidative stress (Kon-
tush et al., 2003). Similarly, HDL3 is a more potent
protector of LDL from in vitro oxidation compared with
HDL2 (Yoshikawa et al., 1997; Huang et al., 1998). The
antioxidative activity of small, dense HDL is related to
the inactivation of proatherogenic products of LDL lipid
peroxidation, primarily LOOH (Kontush et al., 2003).
Mechanistically, this activity may arise from synergy in
inactivation of oxidized lipids by enzymatic (hydrolysis)
and nonenzymatic (physical removal) mechanisms, in
part reflecting distinct intrinsic physicochemical proper-
ties of the small, dense HDL3c subfraction (Kontush et
al., 2003).

The relative importance of HDL antioxidative activity
in the overall cardioprotective effect of HDL compared
with other biological actions remains indeterminate. A
recent study proposed that the antioxidative activity of
HDL is less important than cholesterol efflux capacity,
as suggested by the absence of antioxidative effects of
human apoA-I expression in apoE�/� mice accompanied
by delayed atherosclerosis (Choudhury et al., 2004). The
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increase in non-HDL-C levels observed in this animal
model, however, renders interpretation of these results
complex. By contrast, both cholesterol efflux capacity
and antioxidative activity of HDL were impaired in par-
allel to a similar extent in apoA-I�/� mice in another
recent study (Moore et al., 2005).

3. Anti-Inflammatory Activity. The anti-inflamma-
tory activity of HDL is illustrated by the ability of HDL
to decrease cytokine-induced expression of adhesion
molecules on endothelial cells and to inhibit monocyte
adhesion to these cells. HDL efficiently inhibit expres-
sion of the vascular cell adhesion molecule-1, intercellu-
lar adhesion molecule-1, and E-selectin in vitro induced
by tumor necrosis factor-� (TNF-�), interleukin (IL)-1,
or endotoxin (Cockerill et al., 1995; Calabresi et al.,
1997; Baker et al., 1999). Moreover, this potent anti-
inflammatory activity observed in vitro can be trans-
lated into inhibition of adhesion molecule expression
and a decrease in neutrophil infiltration in the arterial
wall by reconstituted HDL (rHDL) in a rabbit model of
acute arterial inflammation (Nicholls et al., 2005b). The
ability of HDL to inhibit adhesion molecule expression
may be related to the presence of apoA-I, apoA-II, apoA-
IV, and/or distinct molecular species of PL, including
sphingosine-1-phosphate (S1P) and sphingosylphospho-
rylcholine (Baker et al., 1999; Recalde et al., 2004; Nofer
and Assmann, 2005). The anti-inflammatory action of
HDL involves inhibition of TNF-�-stimulated activation
of sphingosine kinase and production of S1P, which in-
duces adhesion molecule expression in endothelial cells
(Xia et al., 1999); transforming growth factor � may
function as an important mediator of the anti-inflamma-
tory activity (Norata et al., 2005). In addition, HDL
attenuate IL-6 production in endothelial cells exposed to
proinflammatory stimuli, such as TNF-� or endotoxin
(Gomaraschi et al., 2005).

The anti-inflammatory action of HDL also involves
hydrolysis of oxidized lipids by HDL-associated enzymes
(PAF-AH and PON1) and is mechanistically similar to
the antioxidative activity of HDL (Van Lenten et al.,
2001a; Navab et al., 2004b; Recalde et al., 2004). Oxi-
dized PL possess potent proinflammatory activities and
can trigger arterial inflammation (Furnkranz et al.,
2005). Inactivation of oxidized lipids by HDL may be
associated with decreased expression of adhesion mole-
cules in and decreased macrophage adhesion to endothe-
lial cells (Theilmeier et al., 2000; Navab et al., 2004b).

Direct interaction of apoA-I with T lymphocytes,
which can block subsequent activation of monocytes by
lymphocytes, represents another plausible mechanism
of HDL anti-inflammatory action (Burger and Dayer,
2002). In addition, apoA-I has been reported to diminish
neutrophil activation in vitro (Liao et al., 2005). The
anti-inflammatory activity of HDL in vivo is consistent
with elevated levels of CRP in subjects with hypoalphali-
poproteinemia (Sampietro et al., 2002), with negative
correlation between plasma levels of CRP and HDL-C

(Pirro et al., 2003) but also between plasma levels of
intercellular adhesion molecule-1 and HDL-C and par-
ticularly small, dense HDL3-C (Kent et al., 2004).

The potential heterogeneity of HDL anti-inflamma-
tory activity remains poorly characterized. HDL3 has
been reported to be superior to HDL2 in terms of its
capacity to inhibit vascular cell adhesion molecule-1 ex-
pression in endothelial cells (Ashby et al., 1998), a find-
ing that is consistent with the potent antioxidative ac-
tivity of small, dense HDL3 particles (Yoshikawa et al.,
1997; Huang et al., 1998; Kontush et al., 2003).

4. Antiapoptotic, Vasodilatory, Antithrombotic, and
Anti-Infectious Activities. Other antiatherogenic activ-
ities of HDL include antiapoptotic and vasodilatory ac-
tions, mitogenic activity in endothelial cells, attenuated
platelet activation, and anticoagulant and anti-infec-
tious activities (Calabresi et al., 2003).

HDL potently inhibit apoptosis in endothelial cells
induced by oxLDL (Suc et al., 1997; Robbesyn et al.,
2003) or TNF-� (Sugano et al., 2000); this effect is par-
alleled by decreased intracellular generation of ROS and
diminished levels of apoptotic markers, suggesting that
it can be related to the intracellular antioxidative ac-
tions of HDL or HDL components (Suc et al., 1997;
Sugano et al., 2000; Robbesyn et al., 2003). Indeed, HDL
contain bioactive lysophospholipids, including S1P
(Nofer and Assmann, 2005; Zhang et al., 2005), a potent
antiapoptotic agent, which may mediate the antiapop-
totic effect of HDL via increased NO production (Kwon
et al., 2001).

Similarly, HDL vasodilatory activity may be related to
the stimulation of NO release by endothelial cells medi-
ated by intracellular Ca2� mobilization and phosphory-
lation of NOS upon association with apoA-I (Drew et al.,
2004; Nofer et al., 2004). Such activation of NO produc-
tion involves HDL binding to SR-BI with a subsequent
increase in intracellular ceramide levels (Yuhanna et
al., 2001; Li et al., 2002). Furthermore, HDL can stim-
ulate production of prostacyclin, which possesses potent
vasorelaxing activity (Beitz and Forster, 1980; Norata et
al., 2004). Again, the vasoactive effects of HDL can be
mediated by S1P acting via the lysophospholipid recep-
tor S1P3 (Nofer et al., 2004). S1P may be equally impor-
tant for mitogenic effects of HDL in endothelial cells and
for the inhibitory action of HDL on the migration of
vascular smooth muscle cells (Kimura et al., 2003; Nofer
and Assmann, 2005; Tamama et al., 2005).

Similarly, increased production of NO may form a
basis for the inhibitory action of HDL on platelet aggre-
gation (Chen and Mehta, 1994). The antithrombotic ac-
tivity of HDL is observed as inhibitory actions on factors
that promote blood coagulation, including tissue factor,
factors X, Va, and VIIIa (Nofer et al., 2002; Calabresi et
al., 2003). Mechanistically, this effect may be related to
the presence of cardiolipin and phosphatidylethano-
lamine, two minor anionic PL with potent anticoagulant
properties that are enriched in the HDL fraction (Degu-
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chi et al., 2000). In addition, HDL acts via its protein
moiety to enhance the anticoagulant activity of protein S
and activated protein C (Griffin et al., 1999).

Finally, HDL play a major role in the binding and
clearance of circulating endotoxin to the bile and thereby
inhibit endotoxin-induced cellular activation, resulting
in potent anti-infectious activity (Pajkrt et al., 1996;
Levels et al., 2001; Stoll et al., 2004). The inactivation of
endotoxin by HDL is mediated by direct interaction with
apoA-I (Ma et al., 2004) and involves reduced CD14
expression on monocytes as a key step (Pajkrt et al.,
1996). In addition, human HDL possess specific trypano-
some-lytic activity, which selectively protects humans
from Trypanosome brucei brucei (Hajduk et al., 1989).

The potential heterogeneity of these antiatherogenic
activities among HDL particles is indeterminate. The
anticoagulant activity of tissue factor pathway inhibitor
in human plasma has been reported to be preferentially
associated with dense subspecies of HDL and LDL
(Lesnik et al., 1993). Similarly, the trypanosome-lytic
activity is associated with a minor large and dense HDL
subfraction with a molecular mass of 490 kDa (Hajduk
et al., 1989). Finally, our recent data suggest that small,
dense HDL potently inhibit apoptosis induced in endo-
thelial cells by oxLDL (Suc et al., 1997; Robbesyn et al.,
2003; J. de Souza, M. J. Chapman, and A. Kontush,
unpublished data).

III. Functionally Defective High-Density
Lipoprotein in Dyslipidemic and

Inflammatory States

HDL is known to undergo dramatic modification in
structure and composition as a result of the concerted
actions of the acute-phase response and inflammation
(Khovidhunkit et al., 2004b; Esteve et al., 2005). The
close association between inflammation, oxidative
stress, dyslipidemia, and atherosclerosis suggests that
such HDL alterations play a significant role in disease
progression. As a result, HDL particles progressively
lose normal biological activities and acquire altered
properties. Such altered HDL particles have been
termed “dysfunctional HDL” (Navab et al., 2001b), and
HDL has been proposed to possess “chameleon-like prop-
erties” (Navab et al., 1996; Van Lenten et al., 2001a). It
is essential to emphasize that the degree of loss of nor-
mal HDL function compared with the absence of this
function depends on the assay used to characterize HDL
functionality. Indeed, HDL can be dysfunctional (with
total loss of function) in cell-based or cell-free assays
aimed at measuring anti-inflammatory activity (Navab
et al., 2001b; Ansell et al., 2003), whereas measure-
ments of antioxidative activity (Kontush et al., 2003,
2004, 2005; Hansel et al., 2004; Nobecourt et al., 2005)
or cholesterol efflux capacity (Banka et al., 1995; Caval-
lero et al., 1995; Brites et al., 2000; Khovidhunkit et al.,

2001) reveal a deficiency in normal HDL function rather
than a complete dysfunction.

A. Altered High-Density Lipoprotein Composition and
Enzymatic Activities in Dyslipidemic and
Inflammatory States

1. Apolipoproteins. Both the plasma levels and apo-
lipoprotein content of HDL can be significantly altered
during the acute phase as well as during acute and
chronic inflammation. Levels of apoA-I and apoA-II de-
crease, whereas those of apoA-IV, apoA-V, apoJ, and
apoE increase (Khovidhunkit et al., 2004a,b). The de-
crease in HDL apoA-I levels in inflammatory states is
related to both decreased apoA-I synthesis in the liver
and apoA-I replacement in HDL particles by SAA (Fig.
5) (Khovidhunkit et al., 2004b; Esteve et al., 2005). SAA
is a 12-kDa acute-phase protein whose circulating levels
can be induced up to 1000-fold (Malle et al., 1993). HDL
is a major carrier of SAA in human, rabbit, and murine
plasma (Hoffman and Benditt, 1982a; Marhaug et al.,
1982; Cabana et al., 1996). In the circulation, SAA does
not exist in a free form and associates with non-HDL
lipoproteins in the absence of HDL (Cabana et al., 2004).
In the presence of HDL, SAA is specifically associated
with small, dense HDL3 subspecies (Benditt and Erik-
sen, 1977; Hoffman and Benditt, 1982a; Coetzee et al.,
1986; Cabana et al., 1996) via its N-terminal domain
(Liang et al., 1996), but it is also present in large and
intermediate HDL (Coetzee et al., 1986; Cabana et al.,
1996).

SAA is able to replace apoA-I in small, dense HDL
upon induction of the acute phase (Parks and Rudel,
1985; Coetzee et al., 1986); as a result, plasma levels of
apoA-I decrease (Cabana et al., 1996). In dense HDL,
SAA can account for up to 80% of total protein; such
enrichment can further increase HDL protein content
and density (Cabana et al., 1989). Elevated plasma lev-
els of SAA are accompanied by elevated levels of lipid-
free apoA-I, probably due to the dissociation of apoA-I
from HDL (Cabana et al., 1996). In rabbits and mice,
SAA can completely replace apoA-I in a subset of small,
dense HDL particles, thereby functioning as a structural
apolipoprotein (Cabana et al., 1996, 1999). In such SAA-
only HDL, 20 molecules of SAA have been estimated to
replace all 3 molecules of apoA-I in each HDL particle.
SAA is mainly produced by the liver but also by arterial
wall cells and adipocytes (Hoffman and Benditt, 1982b;
Malle et al., 1993). Primary murine hepatocytes secrete
SAA as a monomer, which subsequently associates with
small, lipid-poor, apoA-I-containing HDL secreted via a
separate pathway (Hoffman and Benditt, 1982b).

Similar to CRP, elevated plasma levels of SAA have
been reported to represent a CV risk factor. In a pro-
spective case-control study, plasma level of hs-CRP was
the strongest univariate predictor of CV risk in appar-
ently healthy postmenopausal women; the relative risk
of events for women in the highest compared with the
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lowest quartile was 4.4 (95% confidence interval, 2.2–
8.9) (Ridker et al., 2000). However, SAA levels also re-
vealed a significant, albeit weaker, association with CV
events (relative risk for the highest versus lowest quar-
tile 3.0). Remarkably, the levels of hs-CRP and SAA
were significant predictors of CV risk even in the sub-
group of women with low LDL-C levels (Ridker et al.,
2000).

In addition, baseline SAA levels were independently
associated with angiographic CAD (Liuzzo et al., 1994)
and were highly predictive of 3-year CV events in
women referred for coronary angiography for suspected
myocardial ischemia (Liuzzo et al., 1994) as well as of
the progression of carotid atherosclerosis in patients
undergoing ultrasound investigations (Schillinger et al.,
2005). By comparison, hs-CRP was not associated with
angiographic CAD but, like SAA, was strongly and in-
dependently predictive of adverse CV outcome. Eleva-
tion of hs-CRP and SAA levels at the time of hospital
admission predicted poor outcome in patients with un-
stable angina (Liuzzo et al., 1994). Elevated SAA levels
were associated with increased mortality in transplant
patients with CAD (Fyfe et al., 1997). Furthermore,
circulating SAA is elevated in CHD patients (Fyfe et al.,
1997; Delanghe et al., 2002), subjects with CAD (Fyfe et
al., 1997; Winkler et al., 2005), and patients with type 2
diabetes (Choudhury and Leyva, 1999) compared with
healthy control subjects. Local concentrations of SAA

are elevated in the coronary artery at sites of plaque
rupture compared with concentrations in the aorta in
patients with acute myocardial infarction (Maier et al.,
2005). Finally, plasma levels of SAA correlate with the
development of atherosclerosis in mouse models of this
disease (Herrington and Parks, 2004; Lewis et al., 2004).

The proatherogenic properties of SAA are intimately
related to its biological activities. SAA is present in
human and murine atherosclerotic lesions and coloca-
lises with apoA-I, apoB, and the proteoglycan perlecan
(Yamada et al., 1996; O’Brien et al., 2005). HDL enrich-
ment in SAA enhances in vitro HDL binding to proteo-
glycans due to the presence of a proteoglycan-binding
domain in the SAA molecule (Lewis et al., 2004; O’Brien
et al., 2005); thus, SAA might immobilize HDL particles
in the arterial wall, which would otherwise transport
cholesterol from the plaque to the liver. In addition,
SAA-enriched HDL are rapidly cleared from the circu-
lation (Hoffman and Benditt, 1983); SAA may then play
a role in the lipoprotein redistribution to the arterial
wall. Finally, enrichment in SAA may impair the normal
atheroprotective activities of HDL (see below).

Human LDL contain low levels of SAA; LDL-associ-
ated SAA has been recently proposed to represent a risk
factor for cardiac events in stable CAD (Ogasawara et
al., 2004). SAA-carrying LDL represent 5 to 6% of total
LDL, contain increased levels of products of lipid and
protein oxidation and may represent circulating oxLDL

FIG. 5. Abnormal metabolism and deficient biological activities of HDL in atherogenic dyslipidemias of metabolic disease. Chronic inflammation
characteristic of metabolic disease, such as MetS and type 2 diabetes, is associated with elevated plasma levels of IL-6. As a result, the liver produces
SAA, which replaces apoA-I and PON1 in HDL. Oxidative stress, hyperglycemia, and elevated activity of CETP are other important modulators of
HDL function. Oxidative stress modifies specific amino acids in apoA-I, whereas hyperglycemia results in apoA-I glycation. CETP exchanges CE and
TG between HDL and TG-rich lipoproteins, such as VLDL; as a result, HDL become enriched in TG. Such enrichment in TG induces conformational
changes in apoA-I, which becomes less accessible for the interaction with other lipoproteins, including LDL, and cannot eliminate oxidized lipids from
LDL. Subsequent HDL hydrolysis by HL produces small, dense HDL that are enriched in TG and in SAA and contain apoA-I in an incorrect
conformation; such HDL possess deficient functionality compared with normal HDL particles.
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(Ogasawara et al., 2004). The increased SAA content of
such LDL may enhance its retention in atherosclerotic
lesions. Such SAA-mediated accumulation of LDL lipids
in the lesions may lead to plaque instability and result
in plaque rupture (Johnson et al., 2004).

Apart from its replacement by SAA, apoA-I can un-
dergo other modifications in the circulation. Amino acid
residues in apoA-I, such as methionine, cysteine, ty-
rosine, and lysine residues, can be selectively modified
under the action of prooxidants secreted by arterial wall
cells (Bergt et al., 2004; Zheng et al., 2004; Nicholls et
al., 2005d) and nonenzymatically glycosylated in the
presence of high levels of glucose (Fievet et al., 1995). In
human atherosclerotic lesions, proteins oxidized by
HOCl or acrolein colocalise with extracellular apoA-I
(Bergt et al., 2004; Shao et al., 2005c). Oxidized amino
acid residues, including chlorotyrosines, nitrotyrosines
and oxidized lysine and methionine residues, are
present in apoA-I isolated from plasma and from human
atherosclerotic lesions (Bergt et al., 2004; Zheng et al.,
2004; Panzenbock and Stocker, 2005; Shao et al., 2005c);
furthermore, the apoA-I content of chloro- and nitroty-
rosines is increased in plasma of patients with CV dis-
ease. Myeloperoxidase, a major source of chlorinated
ROS in the arterial wall, binds to apoA-I in vitro and in
vivo and produces similar patterns of oxidized amino
acids. Residue Tyr-192 represents the major target for
myeloperoxidase-catalyzed oxidation in the apoA-I mol-
ecule both in vitro and in vivo, whereas three other
tyrosine residues at positions 29, 166, and 236 are mod-
ified to a lesser extent (Zheng et al., 2005). Thus, apoA-I
represents a selective target for chlorination and nitration
in human atheromatous tissue catalyzed by myeloperoxi-
dase. In vivo oxidation of apoA-I is equally consistent with
the observation that HDL from hypercholesterolemic
chickens contain higher amounts of oligomeric apoA-I and
are more susceptible to in vitro oxidation than HDL from
control animals (Artola et al., 1997).

2. Enzymes with Antioxidative and Anti-Inflammatory
Properties. HDL-associated enzymes, including PAF-
AH, PON1, and LCAT, can become dysfunctional and/or
depleted under inflammatory conditions (Navab et al.,
1997; Van Lenten et al., 2001b), in metabolic diseases
involving low HDL levels (type 2 diabetes, MetS) (Han-
sel et al., 2004; Nobecourt et al., 2005), and in premature
CHD (Ansell et al., 2003). Induction of the acute-phase
response is associated with decreased PON1 activity,
probably due to the replacement of PON1 by SAA (Fig.
5) (Navab et al., 1997; Van Lenten et al., 2001b). Fur-
thermore, decreased PON1 activity may be caused by
enzyme inactivation as a result of oxidation (Jaouad et
al., 2003) and/or glycation (Hedrick et al., 2000; Ferretti
et al., 2001). Consistent with these observations, serum
concentrations of PON1 are decreased in subjects with
MetS (Blatter Garin et al., 2005) and in patients with
type 1 and type 2 diabetes (Boemi et al., 2001; Costa et
al., 2005), who feature elevated levels of inflammation

and oxidative stress (Ridker et al., 2004a). Serum PON1
activity decreases with age (Costa et al., 2005) and is
lower in subjects with MetS (Blatter Garin et al., 2005)
and low HDL-C (Brites et al., 2004) and patients with
type 2 diabetes (Boemi et al., 2001; Costa et al., 2005)
and familial hypercholesterolemia (FH) (Mackness et
al., 1991) compared with age-matched healthy control
subjects. Moreover, low PON1 activity toward paraoxon
has been reported to represent an independent risk fac-
tor for coronary events in men at high CV risk (Mack-
ness et al., 2003).

HDL-associated PAF-AH activity, expressed as a per-
centage of total serum PAF-AH activity, is lower in FH
patients than in control subjects (Karabina et al., 1997;
Tsimihodimos et al., 2002). By contrast, LDL-associated
PAF-AH activity is elevated in homozygous FH subjects
(Tsimihodimos et al., 2002), indicating a major redistri-
bution of PAF-AH activity in plasma of FH individuals
from apoA-I- to apoB-containing lipoproteins (Tsimi-
hodimos et al., 2002). Finally, LCAT activity is dimin-
ished under inflammatory conditions (Jonas, 2000).

3. Lipid Components. Although apolipoproteins and
enzymes are major determinants of altered HDL func-
tion, it is considerably influenced by changes in lipid
content. HDL core enrichment in TG with CE depletion
is the most frequent abnormality of HDL lipid composi-
tion (Fig. 5) and occurs in hypertriglyceridemic states
associated with decreased activity of LPL, decreased
activity of HL, and/or decreased activity of LCAT; all
these metabolic alterations are frequently observed in
the acute phase and during inflammation (Cabana et al.,
1996). In addition, HDL-TG content can be raised as a
consequence of elevated CETP-mediated TG transfer
from VLDL to HDL (de Grooth et al., 2004a; Le Goff et
al., 2004).

Under such conditions, TG typically replace CE in the
HDL core, resulting in a low CE/TG ratio and in a
decrease in plasma HDL-C levels, another feature of the
acute phase response (Khovidhunkit et al., 2004b). In-
terestingly, a similar elevation in HDL-TG, decrease in
HDL-C, and increase in inflammatory markers are ob-
served in the postprandial phase (Schaefer et al., 2005).
Human acute-phase HDL obtained from patients under-
going bypass surgery are enriched in TG and depleted of
CE (Pruzanski et al., 2000). Acute-phase HDL also con-
tain elevated levels of nonesterified fatty acids (NEFA),
lysophosphatidylcholines and isoprostanes compared
with normal HDL; in addition, CE levels are decreased
(Pruzanski et al., 2000). Similarly, HDL3 from subjects
with myocardial infarction are enriched in TG and de-
pleted of PL (Clifton et al., 1985). Induction of the acute-
phase response in monkeys increases plasma TG levels
and TG content in total HDL and in all HDL subfrac-
tions and also decreases HDL-C and HDL-CE; these
effects are paralleled by cytokine-induced decreases in
the activities of HL, LPL, and LCAT and increases in the
activity of CETP (Auerbach and Parks, 1989; Ettinger et
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al., 1990; Cabana et al., 1996). In addition, acute-phase
HDL obtained from hamsters display reduced CE con-
tent and elevated PL and FC contents compared with
normal HDL (Khovidhunkit et al., 2001). As a conse-
quence of decreased LCAT activity, increased HDL con-
centrations of free cholesterol are frequently observed in
inflammatory states; in addition, HDL free cholesterol is
elevated in genetic LCAT deficiency (Jonas, 2000). By
contrast, reduced PL content of HDL is a less consistent
finding (Khovidhunkit et al., 2004b). The reduction of
HDL-PL reported in some studies (Clifton et al., 1985;
Cabana et al., 1989) may reflect elevated activity of
secretory phospholipase A2 frequently observed in the
acute phase (Crowl et al., 1991; Pruzanski et al., 1993;
Tietge et al., 2002).

Equally, HDL composition can be abnormal in other
forms of dyslipidemia. In FH, HDL levels of TG and the
TG/CE ratio are increased (Bagdade et al., 1991; Frenais
et al., 1999). HDL enrichment in TG is associated with
accelerated CE transfer from LDL and HDL to TG-rich
lipoproteins in plasma of FH patients, an observation
that has been linked to abnormal properties of plasma
VLDL1 (Bagdade et al., 1991; Guerin et al., 1995a,
2000a). By contrast, decreased CE transfer from LDL
and HDL to TG-rich lipoproteins, such as those observed
in plasma of subjects with heterozygous CETP defi-
ciency, results in reduced HDL content of TG, elevated
content of CE, and increased HDL size (Koizumi et al.,
1991).

Finally, HDL lipids can be oxidized in vivo with for-
mation of biologically active compounds. For instance,
HDL oxidation by HOCl produces 2-chlorohexadecanal,
a chlorinated fatty aldehyde formed upon oxidative
cleavage of plasmalogen, which exerts inhibitory actions
on endothelial NOS (Marsche et al., 2004).

B. Abnormal High-Density Lipoprotein Metabolism in
Dyslipidemic and Inflammatory States

HDL metabolism is substantially altered in dyslipide-
mic states, including hypertriglyceridemia, hypercholes-
terolemia, mixed dyslipidemia and hypo- and hyperal-
phalipoproteinemia and also during infection and
inflammation. As discussed above, hypertriglyceridemia
is characterized by decreased levels of HDL-C and in-
creased HDL-TG content due to the action of CETP.
Such low HDL-C dyslipidemias associated with hyper-
triglyceridemia are characteristic of metabolic diseases
associated with elevated CV risk, such as type 2 diabetes
and MetS. Mechanisms leading to reduced plasma
HDL-C levels and HDL particle numbers in hypertri-
glyceridemic states are as follows: 1) small HDL parti-
cles, which result from the intravascular lipolysis of
TG-enriched HDL, are cleared more rapidly from the
circulation; 2) TG-enriched HDL are intrinsically more
unstable in the circulation, with apoA-I loosely bound; 3)
lipolysis of TG-enriched HDL lower HDL particle num-
bers by causing apoA-I to be shed from HDL particles

and cleared from the circulation; 4) dysfunctional LPL or
reduced LPL activity contributes to the lowering of HDL
levels by reducing the availability of surface constitu-
ents of TG-rich lipoproteins that sequester to the plasma
pool of nascent HDL particles (Lamarche et al., 1999).

The CE/TG ratio therefore represents a critical factor
in determining HDL particle stability and plasma resi-
dence time; HDL possessing decreased CE/TG ratios are
less stable than normal particles (Sparks et al., 1995;
Rashid et al., 2002; Borggreve et al., 2003; Rashid et al.,
2003). Importantly, a decrease in circulating HDL-C
levels and an increase in TG levels are typical compo-
nents of the acute-phase reaction (Khovidhunkit et al.,
2004b; Esteve et al., 2005). In humans, influenza infec-
tion is associated with decreased levels of HDL-C
(Marchesi et al., 2005); in rodents, endotoxin injection
increases plasma TG levels through increased hepatic
secretion and/or delayed clearance (Feingold et al.,
1992).

HDL metabolism critically depends on the activity of
CETP. In metabolic diseases such as type 2 diabetes and
MetS, elevated CETP activity results in increased CE
transfer from HDL to TG-rich lipoproteins and in recip-
rocal TG transfer, producing TG-enriched HDL and de-
creasing HDL-C levels (Fig. 5) (Le Goff et al., 2004).
Conversely, CETP deficiency reduces the exchange of
TG and CE between HDL and TG-rich lipoproteins and
elevates HDL-C due to CE retention. As a consequence,
increased CETP activity is thought to be proatherogenic
in humans (Barter et al., 2003b). Consistent with this
hypothesis, the low-active CETP TaqIB variant B2B2 is
associated with higher HDL-C plasma levels and a lower
risk of CAD than the high-active variant B1B1 (Boek-
holdt et al., 2005). In addition, baseline CETP levels
positively correlated with carotid intima-media thick-
ness (IMT) in 2 years in FH patients treated with statins
(de Grooth et al., 2004b). Finally, baseline CETP levels
were associated with future CAD in a subset of hyper-
triglyceridemic subjects from an apparently healthy
population (Boekholdt et al., 2004).

Elevated activity of CETP may therefore form a basis
for low HDL-C phenotypes; alternatively, they may re-
sult from a deficiency of apoA-I (Ng et al., 1995), ele-
vated activities of HL (Tato et al., 1995), reduced activ-
ities of LCAT (Kuivenhoven et al., 1997; Hovingh et al.,
2005) or LPL (Blades et al., 1993), or a combination of
these. Furthermore, HDL metabolism is altered in hy-
peralphalipoproteinemia, which can arise from a genetic
deficiency of CETP and/or HL, as well as from increased
production of apoA-I (Yamashita et al., 2000). Familial
CETP deficiency is associated with accumulation of
large CE-rich HDL2 particles (Yamashita et al., 2000);
in addition, large HDL predominate in familial HL de-
ficiency (Cohen et al., 1999).

In hypercholesterolemia, abnormalities of HDL me-
tabolism include moderate decreases in plasma apoA-I
and HDL-C levels (Schaefer et al., 1992; Frenais et al.,
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1999). Subnormal plasma levels of apoA-I in FH are
probably related to an increased fractional catabolic rate
of apoA-I observed both in homozygous (Schaefer et al.,
1992) and heterozygous (Frenais et al., 1999) forms of
FH. In homozygous FH, the deleterious influence of al-
tered apoA-I metabolism on HDL-C levels is further
aggravated by decreased rates of apoA-I production
(Schaefer et al., 1992). Moreover, elevated CETP activity
due to the increased number of apoB-containing lipopro-
teins—mainly LDL—also contributes to depletion of CE
from the plasma HDL pool in FH (Guerin et al., 1995,
2000b).

HDL heterogeneity and particle profile largely reflect
abnormalities in HDL metabolism. In the atherogenic
dyslipidemias of MetS and type 2 diabetes, circulating
levels of large, cholesterol-rich HDL decrease in parallel
with decrease in HDL-C (Syvanne et al., 1995; Blatter
Garin et al., 2005). By contrast, levels of small, dense,
cholesterol-poor HDL particles and their content of
apoA-I are rarely reduced in low HDL-C dyslipidemia
(Hansel et al., 2004; Kontush et al., 2005; Nobecourt et
al., 2005). Consistent with this observation, the relative
apoA-I contents of HDL2b and HDL2a decrease,
whereas those of pre-�1, pre-�2, HDL3a, HDL3b, and
HDL3c increase in hypercholesterolemia, hypertriglyc-
eridemia, and mixed hyperlipidemia (Ishida et al., 1987;
Xu and Fu, 2003; Yang et al., 2005). Furthermore,
plasma concentrations of small pre-�-HDL are increased
in hypercholesterolemia, hypertriglyceridemia, LCAT
deficiency, and CHD but not in CETP deficiency (Ishida
et al., 1987; Miida et al., 1997). Finally, plasma levels of
small 70-kDa HDL are elevated in mixed hyperlipidemia
(Atmeh and Robenek, 1996). Familial low HDL-C dys-
lipidemia appears to represent the only low HDL-C phe-
notype that is characterized by the presence of reduced
concentrations of small pre-�-HDL particles (Soderlund
et al., 2005).

In obesity and insulin resistance, frequent features of
both MetS and type 2 diabetes, plasma levels of large
HDL decrease in parallel with those of HDL-C, whereas
levels of small HDL do not (Garvey et al., 2003; Festa et
al., 2005; Goff et al., 2005; Okazaki et al., 2005). Levels
of �1-HDL are lower and levels of �2-, �3-, and pre-�1-
HDL are higher in obese subjects compared with lean
control subjects (Sasahara et al., 1997). As a result,
MetS, type 2 diabetes, obesity, and insulin resistance
are all characterized by the prevalence of small, dense
HDL in the HDL particle profile, indicating either
impaired conversion from small to large HDL or ac-
celerated turnover and remodeling of large HDL2-like
particles.

Small, dense HDL also prevail in CHD patients. In
male participants in the Framingham Offspring Study,
subjects with CHD displayed higher levels of small pre-
�1- and �3-particles and lower levels of large �1-, pre-
�1-, and pre-�3-particles than subjects without CHD
(Asztalos et al., 2004a). Similarly, subjects with new CV

events possessed higher levels of small pre-�1- and �3-
HDL and lower levels of large �1-, �2-, pre-�1-, and
pre-�2-HDL than subjects without such events in the
Veterans Affairs HDL Intervention Trial (VA-HIT)
study (Asztalos et al., 2005). CAD patients also display
elevated levels of lipid-poor apoA-I (Suzuki et al., 2005).
The increase in small HDL and decrease in HDL of
intermediate size as measured by nuclear magnetic res-
onance are associated with CAD severity in men admit-
ted for diagnostic coronary arteriography (Freedman et
al., 1998). Small HDL also prevail in peripheral arterial
disease (Mowat et al., 1997). By contrast, CETP defi-
ciency elevates plasma levels of large HDL particles,
particularly buoyant, apoE-containing HDL1 but in also
the bulk of HDL2; levels of small particles are affected to
a minor degree (Asztalos et al., 2004b). Similarly, large
HDL prevail in patients with type 1 diabetes (Colhoun et
al., 2002).

Abnormalities in HDL subfraction distribution in hy-
percholesterolemia include reduced levels of apoA-I in
large HDL2b and HDL2a and elevated levels of apoA-I
in small pre-�1, pre-�2, HDL3b, and HDL3c subfrac-
tions (Ishida et al., 1987; Xu and Fu, 2003). FH HDL are
further characterized by elevated content of apoE in
association with increased plasma levels of apoE-en-
riched large HDL1, which represents only a minor frac-
tion of total HDL in normolipidemic individuals (Keidar
et al., 1990).

C. Impaired High-Density Lipoprotein Biological
Activities in Dyslipidemic and Inflammatory States

1. Cholesterol Efflux Capacity. Alterations in HDL
composition and metabolism as occur in dyslipidemia
and inflammation are intimately associated with im-
paired biological activities (Fig. 5). However, data on
HDL cholesterol efflux capacity in atherogenic dyslipi-
demia are conflicting. In primary hypertriglyceridemia
associated with low HDL-C levels, TG-enriched HDL
particles, whose intrinsic cholesterol efflux capacity
from hepatoma Fu5AH cells is impaired, accumulate;
the cholesterol efflux capacity of serum is also reduced
(Brites et al., 2000). Similarly, LpA-I from hypertriglyc-
eridemic patients with well-controlled type 2 diabetes
exhibits decreased capacity to induce cholesterol efflux
from adipose cells (Cavallero et al., 1995). TG-enriched
HDL produced in vitro by coincubation of normal HDL
with CETP are weak activators of cholesterol esterifica-
tion by LCAT and poor donors of CE to HepG2 cells
(Skeggs and Morton, 2002). Consistent with these find-
ings, HDL capacity to deliver CE to hepatic cells through
interaction with SR-BI diminishes as a result of HDL
enrichment in TG (Greene et al., 2001). Furthermore,
the presence of TG-rich lipoproteins may have deleteri-
ous consequences for HDL-mediated cellular cholesterol
efflux as demonstrated by preincubation of lipid-loaded
macrophages with TG-rich lipoproteins (Palmer et al.,
2004).
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By contrast, others have reported normal cholesterol
efflux capacity of serum from hypertriglyceridemic sub-
jects in Fu5AH cells, an observation that can be related
to normal contents of HDL-PL, a key determinant of
HDL-mediated efflux (Fournier et al., 2001). Further-
more, HDL from hypertriglyceridemic CAD patients
with low HDL-C levels possess a normal capacity to
extract cholesterol from smooth muscle cells (Uint et al.,
2003). Consistent with these results, TG-enriched HDL
are not deficient in cholesterol efflux properties from
cholesterol-loaded J774 macrophages (Skeggs and Mor-
ton, 2002).

The intrinsic cholesterol efflux capacity of HDL is
considerably impaired during inflammation. Cellular
cholesterol efflux is largely mediated by apoA-I-contain-
ing HDL particles (Ohta et al., 1992); apoA-I replace-
ment by SAA can therefore have a significant impact on
efflux. Enrichment of HDL with SAA (up to high SAA
contents of 86% of total HDL protein) results in in-
creased HDL binding to, decreased cholesterol efflux
capacity from, and increased selective CE uptake by
macrophages (Banka et al., 1995; Artl et al., 2000). Im-
portantly, SAA selectively impairs cholesterol efflux
properties of small, dense HDL3 particles. Less pro-
nounced enrichment of HDL with SAA in vivo (up to 27%
of total HDL protein) does not influence cholesterol ef-
flux but enhances HDL binding to macrophages (Banka
et al., 1995).

The presence of SAA increases both HDL affinity to
and selective CE uptake by macrophages but reduces
affinity to and CE uptake by hepatocytes (Kisilevsky
and Subrahmanyan, 1992; Artl et al., 2002; Cai et al.,
2005); furthermore, SAA efficiently promotes cholesterol
efflux from hepatoma cells (van der Westhuyzen et al.,
2005). During inflammation, the number of binding sites
for HDL-bound SAA increases on macrophages and de-
creases on hepatocytes; in addition, macrophage expres-
sion of ABCA1 is diminished (Baranova et al., 2002).
Decreased PL contents in inflammatory HDL constitute
another factor that contributes to deficient HDL choles-
terol efflux properties as suggested by studies in pa-
tients with periodontitis (Pussinen et al., 2004). To-
gether, these changes lead to a significant shift in the
HDL-mediated cholesterol transport from hepatocytes
toward macrophages under acute-phase conditions
(Kisilevsky and Subrahmanyan, 1992). Biologically,
such alterations may serve to redirect cholesterol to
immune cells and to sites of injury and inflammation.

Similarly, acute-phase HDL from hamsters display
diminished cholesterol efflux capacity from J774 macro-
phages, elevated cholesterol influx capacity, and de-
creased LCAT activity (Khovidhunkit et al., 2001). In
vitro inactivation of LCAT in control HDL results in
similar effects on cholesterol transport, identifying
LCAT as another key player in the abnormal cholesterol
transport properties of HDL particles in inflammatory
states (Khovidhunkit et al., 2001).

Abnormal lipid composition may also impair choles-
terol efflux properties of HDL particles, as demonstrated
by the diminished capacity of large, CE-enriched HDL2
isolated from subjects with homozygous CETP defi-
ciency to accept cholesterol from lipid-loaded mouse
peritoneal macrophages (Ishigami et al., 1994). Normal-
ization of the lipid composition of such HDL, as a result
of the transfer of excess CE to SR-BI-overexpressing
cells, improves HDL cholesterol efflux capacity (Ki-
noshita et al., 2004).

Oxidative modification represents another factor in-
volved in the impairment of HDL cholesterol efflux ca-
pacity. In vitro oxidation of apoA-I by myeloperoxidase
results in selective inhibition of ABCA1-dependent cho-
lesterol efflux from macrophages (Bergt et al., 2004;
Zheng et al., 2004); oxidation of Tyr-192 and Tyr-166
residues appears to specifically account for this effect
(Shao et al., 2005a; Zheng et al., 2005). In parallel, the
lipid-binding capacity of apoA-I is progressively im-
paired (Zheng et al., 2005). Similarly, both in vitro HDL
oxidation by Cu2� and HDL modification by acrolein
decrease HDL-mediated cholesterol efflux from cultured
cells (Rifici and Khachadurian, 1996; Shao et al., 2005b).
Oxidized forms of cholesterol, including 7-ketocholes-
terol, may account for impaired cholesterol efflux from
macrophage-derived foam cells mediated by apoA-I,
such oxysterols act through alterations in cell mem-
brane properties (Gelissen et al., 1999; Gaus et al.,
2001). Finally, the cholesterol efflux capacity of apoA-I
may be impaired as a consequence of nonenzymatic gly-
cosylation (Fievet et al., 1995; Ferretti et al., 2005).

The central role of apoA-I in HDL-mediated choles-
terol efflux is consistent with the deleterious role of
apoA-I mutations. ApoA-I Oslo carrying the R160L sub-
stitution and apoA-I mutant carrying the P165R substi-
tution, two naturally occurring apoA-I variants associ-
ated with low HDL-C levels, are less effective in
promoting cholesterol efflux from smooth muscle cells
compared with normal HDL (Daum et al., 1999). Both
mutants display a reduced ability to activate LCAT.
Furthermore, cholesterol efflux from human fibroblasts
and murine peritoneal macrophages mediated by apoA-I
Nichinan, a naturally occurring human apoA-I variant
with a deletion of glutamic acid at codon 235, is reduced
relative to normal apoA-I (Han et al., 1999; Huang et al.,
2000). In addition, familial low HDL-C deficiency is
characterized by reduced HDL3- and apoA-I-mediated
cellular cholesterol efflux in the absence of abnormali-
ties in cellular HDL3 binding (Marcil et al., 1999).

However, not all mutations in apoA-I lead to de-
creased cholesterol efflux capacity. ApoA-I Milano, a
molecular variant of apoA-I characterized by the
Arg173Cys substitution, displays potent capacity for
cholesterol efflux, a unique feature that is related to the
formation of apoA-I Milano homodimers with prolonged
plasma residence time (Franceschini et al., 1999; Chiesa
and Sirtori, 2003). Carriers of apoA-I Milano exhibit
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severe hypoalphalipoproteinemia but are not at in-
creased risk for premature CHD (Sirtori et al., 2001) (see
below).

Finally, the capacity of HDL particles to extract cho-
lesterol from peripheral cells may be impaired as a re-
sult of alterations in cellular HDL receptors, primarily
ABCA1. Thus, individuals from families with ABCA1
mutations display lower levels of HDL-C, higher IMT,
and lower cholesterol efflux from fibroblasts compared
with matched control subjects (van Dam et al., 2002).

2. Antioxidative Activity. Recent evidence indicates
that HDL particles are deficient in antioxidative activity
in atherogenic dyslipidemias involving low HDL-C lev-
els (Hansel et al., 2004; Kontush et al., 2005; Nobecourt
et al., 2005). Thus, the antioxidative activity of small,
dense HDL subfractions against LDL oxidation induced
by 2,2�-azobis-(2-amidinopropane) hydrochloride is sig-
nificantly impaired in patients with MetS (up to �23%)
(Hansel et al., 2004) and well-controlled type 2 diabetes
(up to �47%) (Nobecourt et al., 2005). HDL antioxida-
tive activity is deficient both on a unit particle mass and
on a particle number basis. In another study, large, light
HDL2 show decreased protection of LDL against oxida-
tion mediated by THP1 macrophages in poorly con-
trolled type 2 diabetes (Gowri et al., 1999). The impaired
antioxidative activity of small, dense HDL in MetS and
type 2 diabetes is intimately related to the concomitant
presentation of hypertriglyceridemia, hyperinsulinemia,
and insulin resistance, thereby suggesting that abnor-
malities in both lipid and glucose metabolism underlie
the antioxidative deficiency of HDL particles (Hansel et
al., 2004; Nobecourt et al., 2005). Furthermore, all HDL
subfractions from subjects with a normotriglyceridemic,
normocholesterolemic, normoglycemic low HDL-C phe-
notype display lower antioxidative activity (up to �43%)
than their counterparts from normolipidemic control
subjects (Kontush et al., 2005). Interestingly, the intrin-
sic antioxidative activity of HDL particles is equally
reduced in subjects with hyperalphalipoproteinemia as-
sociated with low HL activity and high HDL-TG content
(Kontush et al., 2004).

The antioxidative HDL deficiency in low HDL-C dys-
lipidemias of MetS and type 2 diabetes and in a nor-
motriglyceridemic low HDL-C phenotype is paralleled
by decreased enzymatic activities and altered physico-
chemical properties of HDL (Hansel et al., 2004; Kon-
tush et al., 2005; Nobecourt et al., 2005), thereby sug-
gesting that the intrinsic properties of HDL particles,
rather than low HDL-C levels per se, are determinants
of antioxidative deficiency of HDL3 subfractions. In each
study population (MetS, type 2 diabetes, and normotri-
glyceridemic low HDL-C phenotype), HDL3 subfractions
were enriched in TG and CE depleted (Hansel et al.,
2004; Kontush et al., 2005; Nobecourt et al., 2005), po-
tentially reflecting elevated CETP activity and/or re-
duced HL activity; these alterations correlated with the
diminished antioxidative activity of HDL3 subfractions.

Mechanistically, the relationship between TG enrich-
ment of HDL particles and impairment of antioxidative
activity can be explained by the fact that the replace-
ment of CE by TG in the HDL lipid core considerably
alters the conformation of the central and C-terminal
domains of apoA-I, which are critical for HDL to act as
an acceptor of oxidized lipids (Sparks et al., 1995; Cur-
tiss et al., 2000). Moreover, replacement of CE by TG in
spherical rHDL decreases the conformational stability of
apoA-I (Sparks et al., 1995), resulting in TG-containing
particles, which are unstable and which lose apoA-I
upon storage.

Replacement of apoA-I by acute-phase proteins, pri-
marily SAA, in small, dense HDL particles under condi-
tions of chronic inflammation (Van Lenten et al., 2001a)
may represent another mechanism contributing to the
impairment of HDL antioxidative activity. As in the case
of the replacement of CE by TG, the replacement of
apoA-I by SAA may cause deficient activity of HDL as an
acceptor of oxidized PL, resulting in their elevated ac-
cumulation in LDL.

Altered enzymatic activities also contribute to the an-
tioxidative deficiency of small, dense HDL. PAF-AH and
PON1 activities are consistently lower in all HDL sub-
fractions from patients with type 2 diabetes compared
with matched normolipidemic control subjects (Nobe-
court et al., 2005). Moreover, PAF-AH and PON1 activ-
ities positively correlate with HDL3 antioxidative activ-
ity (Nobecourt et al., 2005), suggesting that these
enzymes are implicated in the deficiency of HDL anti-
oxidative function. In type 1 diabetes, serum concentra-
tions of PON1 are reduced to such an extent that dimin-
ished oxidative protection of LDL by HDL in vitro
results (Boemi et al., 2001). Consistent with this mech-
anism, inactivation of HDL-associated enzymes, such as
PON1 or LCAT, by oxidation and/or glycation leads to
decreased capacity of HDL to protect LDL from oxida-
tive stress (Hedrick et al., 2000; Ferretti et al., 2001;
Jaouad et al., 2003; Ferretti et al., 2005). The role of
enzymes in HDL antioxidative deficiency is also consis-
tent with data obtained in obese leptin-deficient (ob/ob),
LDL-R�/� mice that possess dysfunctional HDL display-
ing not only decreased PON1 and LCAT activities, but
also elevated levels of antibodies against oxLDL
(Mertens et al., 2003).

An antioxidative deficiency of HDL may also be ob-
served when antioxidative activity is measured in total
HDL, rather than in individual HDL subfractions. Total
HDL from humans and rabbits lose the ability to protect
LDL against oxidation by artery wall cells in coculture
during induction of the acute phase, concomitant with
decreases in PON1 and PAF-AH activities (Watson et
al., 1995a,b). Total HDL from mice that are genetically
predisposed to diet-induced atherosclerosis do not pro-
tect LDL against oxidation in cocultures of artery wall
cells when the mice are fed an atherogenic diet, injected
with LDL-derived oxidized PL, or infected with influ-
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enza A virus (Shih et al., 1996; Navab et al., 1997; Van
Lenten et al., 2001b). Such loss of antioxidative activity
of murine HDL is accompanied by decrease in PON1
activity. In addition, antioxidative deficiency of total
HDL is observed in both apoE�/� (Navab et al., 1997)
and apoA-II transgenic (Warden et al., 1993; Castellani
et al., 1997) mice.

Furthermore, total HDL-mediated protection of LDL
from oxidation by Cu2� is compromised in postmeno-
pausal compared with premenopausal women (Zago et
al., 2004). This effect is paralleled by decreased plasma
levels of HDL-C, elevated HDL levels of TG, and in-
creased HDL oxidability in the postmenopausal group;
the two latter parameters are significantly correlated
(Zago et al., 2004). By contrast, serum PON1 activity did
not differ between the groups, lending further support to
our hypothesis that alterations of HDL core lipid com-
position are a key determinant of the antioxidative func-
tion of HDL particles. In addition, the antioxidative
activity of total HDL toward LDL oxidation by �-radi-
olysis of water is attenuated in elderly compared with
young subjects (Jaouad et al., 2005). Finally, a dimin-
ished capacity of HDL to remove lipid hydroperoxides
from erythrocyte membranes and attenuated HDL
PON1 activity are features of poorly equilibrated type 1
diabetes (Ferretti et al., 2004).

In another study, no difference in HDL antioxidative
activity, chemical composition, and serum PON activity
was detected between type 2 diabetic patients with gly-
cemic control and healthy control subjects (Sanguinetti
et al., 2001). Similarly, patients with renal disease do
not display antioxidatively deficient HDL despite low
serum PON1 activity and low HDL levels of CE and
�-tocopherol (Hasselwander et al., 1999). The high albu-
min content of HDL in this study is, however, notewor-
thy. These negative results suggest that measurement of
the antioxidative activity of small, dense HDL may pro-
vide a more sensitive estimation of HDL antioxidative
activity in some patient populations compared with
measurements performed on total HDL.

Despite the fact that HDL antioxidative deficiency has
been extensively documented in atherogenic dyslipi-
demias using in vitro assays, direct evidence for its
presence in vivo is still lacking. Indirect evidence in-
cludes an association between elevated levels of plasma
HDL and reduced levels of lipid peroxidation products
after a single intravenous injection of a large dose of
human HDL3 (200 mg of protein) in hypercholester-
olemic rabbits (Klimov et al., 1993), suggesting compro-
mised antioxidative activity of autologous rabbit HDL
under conditions of hypercholesterolemia.

3. Anti-Inflammatory Activity. HDL particles pos-
sessing antioxidative activity within the normal range
can prevent formation of or inactivate proinflammatory
oxidized PL produced during LDL oxidation and are
therefore anti-inflammatory (Navab et al., 2001a,b).

Such potent anti-inflammatory activity becomes defi-
cient and even transforms into in vitro pro-inflamma-
tory action under conditions favoring development of
atherosclerosis. In contrast with functional HDL, proin-
flammatory dysfunctional HDL is unable to protect LDL
from oxidation by arterial wall cells and to prevent
monocyte migration induced by oxLDL (Navab et al.,
2001a,b). Total HDL from CHD patients with normal or
elevated HDL-C levels are proinflammatory in both cell
culture and cell-free fluorescent assays (Ansell et al.,
2003). Similarly, HDL from mice that are genetically
predisposed to diet-induced atherosclerosis become
proinflammatory when the mice are fed an atherogenic
diet, injected with LDL-derived oxidized PL or infected
with influenza A virus (Shih et al., 1996; Navab et al.,
1997; Van Lenten et al., 2001b). Proinflammatory HDL
can also be detected in apoE�/� mice (Navab et al.,
1997). In addition, transgenic mice overexpressing
apoA-II possess proinflammatory HDL and develop ath-
erosclerosis on a chow diet (Warden et al., 1993; Castel-
lani et al., 1997). Finally, the anti-inflammatory activity
of HDL is diminished in patients with obstructive sleep
apnea subjected to repetitive cycles of hypoxia/reoxygen-
ation (Tan et al., 2005); such patients frequently exhibit
the MetS.

Formation of proinflammatory HDL correlates with
decreases in the activities of various HDL-associated
enzymes, such as PON1, PAF-AH, and LCAT, which are
replaced by acute-phase proteins, such as SAA and cer-
uloplasmin; indeed, the content of these proteins in HDL
increases during an inflammatory response (Navab et
al., 2001a,b). Copper-containing ceruloplasmin may pro-
vide a source of transition metals for oxidative reactions,
thereby accounting for the enhancement of LDL modifi-
cation by acute-phase HDL (Navab et al., 2001a,b). Pu-
rified ceruloplasmin can induce LDL oxidation due to its
content of a loosely bound copper atom (Ehrenwald et
al., 1994; Ehrenwald and Fox, 1996); the in vitro enrich-
ment of HDL with ceruloplasmin abrogates the ability of
HDL to inhibit LDL modification in aortic wall cell co-
cultures (Van Lenten et al., 1995).

Interestingly, HDL PON1 activity is not decreased in
CHD patients possessing proinflammatory HDL (Ansell
et al., 2003), indicating that factors other than PON1
determine anti-inflammatory HDL dysfunction in vitro.
In this study, plasma TG levels were markedly elevated
(�76%) in CHD patients compared with control subjects
(Ansell et al., 2003), suggesting that concomitant HDL
enrichment in TG might have significantly contributed
to the formation of dysfunctional HDL as proposed else-
where (Hansel et al., 2004; Kontush et al., 2004, 2005;
Nobecourt et al., 2005).

Intriguingly, all of the alterations in HDL composition
that lead to attenuated anti-inflammatory and anti-
oxidative activities (depletion in CE, apoA-I, PON1,
and LCAT and increase in TG and SAA) are observed
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during inflammation and in the acute-phase response
(Khovidhunkit et al., 2004b; Esteve et al., 2005). The
pro-inflammatory and prooxidative rearrangement of
HDL particles and formation of LDL-derived oxidized
PL have been hypothesized to form part of an evolution-
ary conserved mechanism of nonspecific innate immu-
nity aimed to protect against infection (Navab et al.,
2001a,b). Such an innate inflammatory response may
include subnormal levels of HDL-C, increased HDL-TG
content, and altered HDL apolipoprotein composition,
all of which impair cholesterol efflux capacity as well as
the antioxidant and anti-inflammatory activities of HDL
particles. These modifications in HDL may be aimed to
redirect cholesterol from the liver to immune cells, par-
ticularly macrophages, during infection (Kisilevsky and
Subrahmanyan, 1992). Such a response to acute infec-
tion or injury can be advantageous in the short term but
may become maladaptive in the long term. A sustained
response that is not able to repair the injury, such as an
emerging atherosclerotic plaque, which can be consid-
ered as a local inflammation (Libby, 2002), may lead to
a chronic alteration in plasma lipid levels; such a re-
sponse may become harmful, accelerating the formation
of atherosclerotic lesions (Esteve et al., 2005). This
mechanism is consistent with a recent hypothesis that
accelerated development of atherosclerosis in old age is
related to increased inflammation and concomitant en-
dothelial dysfunction during early life (Finch and Crim-
mins, 2004; Charakida et al., 2005; Napoli et al., 2005).
Within this concept, classic lipid changes associated
with MetS (low HDL-C and elevated TG levels) are
envisioned as a highly conserved evolutionary response
aimed to repair tissue (Esteve et al., 2005).

It is indeterminate as to whether deficient anti-in-
flammatory activity of HDL is selectively associated
with a subset of HDL particles as suggested by studies
with rHDL (Nanjee et al., 1999; Nicholls et al., 2005b).
The specific association of the deficient antioxidative
activity with small, dense HDL (Hansel et al., 2004;
Kontush et al., 2004, 2005; Nobecourt et al., 2005) to-
gether with the direct mechanistic link between anti-
inflammatory and antioxidative activities (Navab et al.,
2001a,b) suggests that small, dense HDL is a major
subset of the total HDL particle population, which is
responsible for both potent anti-inflammatory activity
under normal conditions and for deficient activity under
pro-atherogenic, pro-inflammatory conditions. This con-
clusion is consistent with the corrected anti-inflamma-
tory properties of HDL from PLTP-deficient mice, which
are characterized by the prevalence of small, lipid-poor
HDL particles (Yan et al., 2004). Intriguingly, small,
dense HDL3c represents the major HDL subfraction in
newborns (Kherkeulidze et al., 1991), consistent with an
elevated need for protection against infection in early
life.

IV. Physiological Relevance of Defective
High-Density Lipoprotein Function in
Dyslipidemia and Metabolic Disease

The attenuated atheroprotective properties of HDL in
metabolic disease raise the possibility of an indirect
putative proatherogenic effect of these particles. Indeed,
attenuated cholesterol efflux capacity of HDL can result
in enhanced accumulation of cholesterol in the arterial
wall and reduced RCT flux. Reduced efficiency of choles-
terol flux through the RCT pathway is thought to ac-
count for the epidemiological link between subnormal
HDL-C levels and increased incidence of CV disease
(Nofer et al., 2002; Assmann and Nofer, 2003; Assmann
and Gotto, 2004; Navab et al., 2004b). Impaired RCT has
been shown to lead to accelerated atherosclerosis in
subjects with Tangier disease (Oram, 2000) and in some
cases of LCAT deficiency (Kuivenhoven et al., 1997).
However, no data are available to our knowledge on the
direct link between atherogenesis and the cholesterol
efflux capacity of HDL particles, although infusion of
apoA-I Milano/phospholipid complex has been shown to
lead to a reduction in atheroma volume in patients with
acute coronary syndromes, suggestive of plaque choles-
terol efflux (Nissen et al., 2003) (see below).

A deficiency in the antioxidative and anti-inflamma-
tory properties of HDL may also result in accelerated
atherosclerosis. The oxidation hypothesis of atheroscle-
rosis postulates that oxidation of lipoproteins, primarily
LDL, in the arterial wall is a key element in atherogen-
esis (Steinberg et al., 1989). The validity of this state-
ment has been confirmed in innumerable studies
(Chisolm and Steinberg, 2000; Steinberg and Witztum,
2002). Its important corollary is that deficient LDL pro-
tection from oxidation may accelerate atherogenesis.
Our recent data indicate clearly that impairment of the
antioxidative activity of small, dense HDL in dyslipi-
demias involving low HDL-C levels is intimately associ-
ated with elevated oxidative stress, a newly recognized
CV risk factor (Schwedhelm et al., 2004; Meisinger et al.,
2005), and may therefore contribute to enhanced athero-
genesis (Hansel et al., 2004; Kontush et al., 2005; Nobe-
court et al., 2005). Indeed, dyslipidemic subjects pre-
senting with atherogenic low HDL-C levels (MetS, type
2 diabetes, and a normotriglyceridemic low HDL-C phe-
notype) are characterized by both deficient antioxidative
activity of small, dense HDL (Hansel et al., 2004; Kon-
tush et al., 2005; Nobecourt et al., 2005) and elevated
systemic oxidative stress assessed as plasma levels of
8-isoprostanes, products of nonenzymatic oxidation of
arachidonic acid (Davi et al., 1999; Devaraj et al., 2001;
Hansel et al., 2004; Kontush et al., 2005; Nobecourt et
al., 2005). Furthermore, HDL antioxidative activity and
plasma 8-isoprostanes are negatively correlated (Hansel
et al., 2004; Nobecourt et al., 2005). In addition, in
subjects with controlled type 2 diabetes, plasma 8-iso-
prostanes negatively correlate with HDL-C levels (No-

360 KONTUSH AND CHAPMAN

 by guest on June 15, 2012
pharm

rev.aspetjournals.org
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org/


becourt et al., 2005), whereas in subjects with a nor-
motriglyceridemic low HDL-C phenotype, plasma
8-isoprostanes positively correlate with an elevated ra-
tio of total cholesterol/HDL-C, thereby reflecting an ex-
cess of atherogenic nonHDL-C relative to antiathero-
genic HDL-C levels (Kontush et al., 2005). The elevation
of plasma 8-isoprostanes in subjects with low HDL-C
dyslipidemias is consistent with the elevation of F2�-
isoprostanes in apoA-I deficient mice, emphasizing the
link between oxidative stress and HDL deficiency
(Moore et al., 2003). Mechanistically, HDL enrichment
in TG may play a role in both elevated oxidative stress
and the deficiency in HDL antioxidative activity, as sug-
gested by strong association between plasma levels of
oxLDL and the TG/HDL-C molar ratio in elderly sub-
jects (Holvoet et al., 2003).

The presence of antioxidatively deficient HDL can
facilitate or even trigger accumulation of LDL-derived
proinflammatory oxidized PL in vivo, resulting in com-
promised anti-inflammatory activity (Ansell et al.,
2003). Functional small, dense HDL particles may in
turn provide protection of LDL against oxidative stress
in the subendothelial space of the arterial wall via re-
moval of oxidized lipids from LDL, with inactivation and
subsequent transfer to the liver mediated by SR-BI. This
mechanism may account, at least in part, for the nega-
tive results of recent large-scale placebo-controlled trials
that did not show any beneficial effect of low-molecular-
weight antioxidants, primarily vitamin E, on the devel-
opment of CV disease (Stocker and Keaney, 2004). The
Nutrition Committee of the American Heart Association
Council on Nutrition, Physical Activity and Metabolism
has recently concluded that “the existing scientific data-
base does not justify routine use of antioxidant supple-
ments for the prevention and treatment of CV disease”
(Kris-Etherton et al., 2004). Moreover, a meta-analysis
of performed trials suggests that supplementation with
vitamin E may even increase all-cause mortality (Miller
et al., 2005). We interpret these data to indicate that
low-molecular-weight antioxidants do not play a key role
in the protection of LDL from oxidation in vivo; by con-
trast, small, dense HDL may constitute a central ele-
ment of such protection.

The impaired antioxidative activity of small, dense
HDL particles in atherogenic dyslipidemia is intimately
linked to the presence of a constellation of CV risk fac-
tors, including hypertriglyceridemia, hyperglycemia, hy-
perinsulinemia, insulin resistance, and a disequilibrium
between circulating levels of atherogenic apoB-contain-
ing lipoproteins and antiatherogenic HDL in favor of the
former (Hansel et al., 2004; Kontush et al., 2005; Nobe-
court et al., 2005). All of these factors are independently
characterized by their significant association with ele-
vated systemic oxidative stress (Morrow, 2005). Such
correlational data (Hansel et al., 2004; Kontush et al.,
2005; Nobecourt et al., 2005) strongly suggest then that
small, dense HDL particles function as a biosensor of

oxidative stress, integrating a wide spectrum of prooxi-
dant signals; the integration of such signals is in turn
expressed as attenuated HDL antioxidative activity. Di-
agnostic detection of small, dense HDL possessing defi-
cient antioxidative activity may therefore serve as a
novel biomarker to assess elevated CV risk.

V. Functionally Defective Small, Dense
High-Density Lipoprotein as a

Therapeutic Target

Subjects at elevated CV risk in primary prevention
and patients in secondary prevention with symptomatic
coronary atherosclerosis possess small HDL3 particles
whose antiatherogenic properties are impaired. Such
defective functionality of small, dense HDL is frequently
paralleled by decreased levels of HDL-C, which can prin-
cipally be accounted for on the one hand by subnormal
levels of large, cholesterol-rich HDL2-like particles and
on the other by altered particle structure and composi-
tion. The association between low HDL-C levels and
functional deficiency of small, dense HDL particles led
us to propose that the deficient antioxidative activity of
HDL can be corrected and concomitantly that elevated
oxidative stress and attenuated HDL anti-inflammatory
activity can be normalized by therapeutic approaches
targeted to raise HDL-C and apoA-I levels and to nor-
malize HDL structure and composition (Ashen and Blu-
menthal, 2005; Nicholls et al., 2005c).

Approaches to raise HDL-C levels may involve up-
regulation of apoA-I synthesis in hepatocytes, increased
lipidation of apoA-I, accelerated efflux of cholesterol and
PL from peripheral cells mediated by ABCA1, decreased
activity of CETP, which results in the diminished het-
eroexchange of CE and TG between HDL and TG-rich
lipoproteins, and inhibition of HDL2 holoparticle uptake
by the liver mediated by hitherto unidentified recep-
tor(s) for HDL holoparticles (Fig. 6). Such approaches
are focused on small molecules whose pharmacological
action results in marked raising of HDL-C, such as a
CETP inhibitor or niacin, either alone or in combination
with a statin. In this way, the LDL-C/HDL-C ratio may
be reduced in dyslipidemic subjects, together with nor-
malization of HDL metabolism, composition, and anti-
atherogenic function. Such normalization can result
from 1) a decrease in plasma TG levels and concomitant
replacement of TG by CE in the HDL core and normal-
ization of apoA-I conformation and function and/or 2) a
decrease in the level of oxidative stress and inflamma-
tion potentially involving replacement of SAA by apoA-I
with normalization of intravascular HDL particle re-
modeling. Therapeutic raising of HDL levels is inti-
mately associated with slowed progression of atheroscle-
rosis and reduced CV risk, as observed in large-scale
clinical studies such as the Armed Forces Regression
Study (AFREGS) (Personius et al., 1998), the Bezafi-
brate Infarction Prevention Trial (BIP) [The Bezafibrate
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Infarction Prevention (BIP) Study, 2000], the VA-HIT
(Robins et al., 2001), the HDL-Atherosclerosis Treat-
ment Study (HATS) (Brown et al., 2001), and the Arte-
rial Biology for the Investigation of the Treatment Ef-
fects of Reducing Cholesterol (ARBITER) 2 trial (Taylor
et al., 2004).

A. Cholesteryl Ester Transfer Protein Inhibitors

CETP inhibitors are promising therapeutic agents
that markedly decrease the activity of plasma CETP (Le
Goff et al., 2004; van der Steeg et al., 2004). The thera-
peutic strategy to inhibit CETP and thereby raise
HDL-C derives from the fact that genetic deficiency of
CETP is associated with increased HDL-C and de-
creased LDL-C levels, a profile that is typically anti-
atherogenic (Le Goff et al., 2004). Human subjects with
heterozygous CETP deficiency and HDL-C levels �60
mg/dl exhibit a reduced risk of CHD (Curb et al., 2004).
Such subjects display elevated levels of �1- and reduced
levels of �3- and pre�-1-HDL subfractions, a profile con-
sistent with corrected HDL antiatherogenicity (Asztalos
et al., 2004b). Partial inhibition of CETP may therefore
be atheroprotective; by contrast, the complete absence of
CETP activity can create a potentially proatherogenic
lipid profile (Brewer, 2004; Le Goff et al., 2004). The
formation of large HDL particles with attenuated anti-
atherogenic activity and of heterogeneous LDL particles
that are characteristic of lipoproteins in homozygous
CETP-deficient patients can be avoided by partial inhi-
bition of CETP. Studies in rabbits, a species with natu-

rally high levels of CETP, support the therapeutic po-
tential of partial CETP inhibition as an approach to
retarding or even reversing atherogenesis (Barter et al.,
2003b; Gaofu et al., 2005).

Small-molecule inhibitors of CETP have now been
tested in human subjects and shown to increase the
concentration of HDL-C while decreasing those of
LDL-C and apoB. In healthy young normolipidemic sub-
jects, torcetrapib dose-dependently inhibits CETP activ-
ity by 12 to 80% and increases HDL-C by 28 to 91% at 30
and 240 mg/day, respectively (Clark et al., 2004). With
respect to modulation of apolipoprotein levels, apoA-I
and apoE were elevated by 27 and 66%, respectively,
whereas apoB was reduced by 26% at a dose of 240
mg/day in these studies. Significantly, CETP inhibition
led to a reduction in the TG content of HDL particles and
an increase in the CE content (Clark et al., 2004). In
subjects with low levels of HDL-C, treatment with 120
and 240 mg of torcetrapib daily raised plasma HDL-C
concentrations by 46 and 106%, respectively (Brousseau
et al., 2004).

Torcetrapib treatment led to elevations in HDL2-C
(�87%) to a greater extent than HDL3-C (�29%), in-
creased plasma apoA-I and apoA-II and reduced plasma
TG levels. In addition, torcetrapib altered the distribu-
tion of cholesterol among HDL and LDL subclasses,
resulting in an increase in the mean particle size of both
HDL and LDL particles in each cohort. Finally, torce-
trapib increased the amount of apoA-I in �1-HDL and
apoA-I pool size and decreased apoA-I fractional cata-
bolic rate, thereby prolonging the residence time of
apoA-I in the circulation (Brousseau et al., 2005). It is
plausible that such a beneficial modulation of HDL me-
tabolism results from normalization of apoA-I lipidation
and thus conformation subsequent to a normalized
CE/TG core lipid ratio (Brousseau et al., 2005).

Another small-molecule CETP inhibitor, JTT-705, at a
dose of 900 mg/day, inhibits CETP by 37% and increases
HDL-C by 34%, apoA-I by 15%, HDL2-C by 59%, and
HDL3-C by 19% in subjects with mild hyperlipidemia
(de Grooth et al., 2002); comparable effects were ob-
served in patients with type II dyslipidemia (Kuiven-
hoven et al., 2005) and with familial hypoalphalipopro-
teinemia (Bisoendial et al., 2005). In rabbits, JTT-705
given at a high dietary dose of 0.75% inhibits CETP
activity, increases both HDL-C concentrations and the
ratio of HDL2-C/HDL3-C, and decreases the fractional
esterification rate of HDL-C, again indicating a prefer-
ential increase in large HDL particles (Zhang et al.,
2004). Levels of apoE in HDL, serum PON activity, and
HDL-associated PAF-AH activity also increase, whereas
plasma lysophosphatidylcholine concentration decreas-
es; enhanced apoE content in HDL particles may be of
special relevance in the potentiation of their catabolism
in the liver and peripheral tissues through the LDL
receptor pathway. Similarly, JTT-705 at a high dose of
300 mg/kg daily in rabbits increased plasma total cho-

FIG. 6. Potential targets for therapeutic normalization of abnormal
metabolism and deficient biological activities of HDL in atherogenic
dyslipidemias of metabolic disease. ①, up-regulation of apoA-I synthesis
in hepatocytes. ②, enhanced lipidation of apoA-I. ③, accelerated efflux of
cholesterol and PL from peripheral cells mediated by ABCA1. ④, de-
creased activity of CETP, which results in the diminished heteroexchange
of CE and TG between HDL and TG-rich lipoproteins. ⑤, inhibition of
HDL2 holoparticle uptake by the liver mediated by hitherto unidentified
receptor(s) for HDL holoparticles. EL, endothelial lipase; FC, free choles-
terol; HDL-R, HDL holoparticle receptor; LDL-R, LDL receptor.
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lesterol, HDL-C, HDL2-C, and HDL3-C and reduced
HDL-TG and CETP activity but did not influence the
cellular cholesterol efflux capacity of HDL (Kobayashi et
al., 2002). Interestingly, torcetrapib at 120 mg increased
HDL-C substantially more than JTT-705 at 900 mg
(Brousseau et al., 2004).

Despite minor impact of CETP inhibitors on circulat-
ing levels of small HDL particles, HDL functionality
may be considerably improved, as suggested by elevated
HDL content of CE and decreased TG (Clark et al.,
2004). This conclusion may be particularly relevant for
HDL antioxidative activity, which strongly depends on
the CE/TG ratio in HDL particles (Hansel et al., 2004;
Kontush et al., 2005; Nobecourt et al., 2005). Consistent
with this hypothesis, JTT-705 decreases circulating lev-
els of oxLDL in familial hypoalphalipoproteinemia (Bi-
soendial et al., 2005), whereas CETP inhibition in vitro
by a monoclonal antibody renders LDL more resistant to
oxidation (Sugano et al., 2000), observations that could
translate into improved HDL-mediated protection of
LDL from oxidation in vivo. The critical role of TG me-
tabolism in the mechanism of action of CETP inhibitors
is also supported by recent data suggesting that CETP
inhibition may be especially effective in reducing CV
risk in patients with elevated TG levels (Wolfe and
Rader, 2004).

B. Niacin

Nicotinic acid (niacin), a vitamin of the B complex, has
been used for almost 50 years as a lipid-modulating
drug. The primary action of nicotinic acid is to suppress
lipolysis of triacylglycerol in adipose tissue via inhibition
of the hormone-sensitive TG lipase (Ganji et al., 2003;
Rosenson, 2003; Karpe and Frayn, 2004; Meyers et al.,
2004). The hormone-sensitive lipase is activated by re-

versible phosphorylation under the influence of protein
kinase A. The antilipolytic action of nicotinic acid in-
volves reduction of intracellular cyclic AMP levels in
adipose tissue via a G-protein-coupled receptor that me-
diates inhibition of adenylyl cyclase. The recently dis-
covered orphan G-protein-coupled receptor (HM74) in
man has been identified as the nicotinic acid receptor in
adipose tissue (Tunaru et al., 2003). HM74 appears to
function as a low-affinity receptor for nicotinic acid,
whereas the shorter homologous form (HM74A) repre-
sents a high-affinity receptor (Wise et al., 2003).

The key feature of the mechanism of action of nicotinic
acid on lipid metabolism involves attenuated adipose
tissue lipolysis, resulting in reduction of circulating lev-
els of NEFA (Fig. 7). NEFA flux to the liver constitutes
the main substrate for hepatic TG synthesis; this TG
may either be integrated into nascent VLDL particles
and secreted into the circulation or alternatively may be
stored in the form of intracellular lipid droplets in the
hepatocyte. Nicotinic acid is therefore distinguished as
the sole pharmacological agent that markedly lowers
NEFA and, as a direct consequence, plasma VLDL-TG
levels.

TG levels are strongly inversely correlated with levels
of HDL-C (Chapman et al., 2004). Thus, a nicotinic acid-
mediated reduction in plasma TG levels predictably
leads to marked raising of HDL-C. This effect is inti-
mately linked to the action of CETP. By attenuating
CETP-mediated depletion of HDL-CE in hypertriglycer-
idemic states such as MetS and type 2 diabetes, the
TG-lowering action of nicotinic acid favors retention of
CE in HDL with normalization of the HDL neutral lipid
content, an increase in particle size, and a prolongation
of plasma HDL-apoAI residence time in vivo, thus re-
sulting in effective raising of HDL-C and apoA-I levels.

FIG. 7. Mechanisms involved in HDL raising by niacin. ① accelerated efflux of cholesterol from peripheral cells mediated by ABCA1 and ABCG1.
②, enhanced formation of mature HDL particles, primarily of HDL2. ③, diminished heteroexchange of CE and TG between HDL and TG-rich
lipoproteins. ④, reduced uptake of HDL2 holoparticles by the liver mediated by receptor(s) for HDL holoparticles with maintained uptake of CE and
free cholesterol from mature HDL by SR-BI. FC, free cholesterol; HDL-R, HDL holoparticle receptor.
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A second mechanism that may contribute to nicotinic
acid-induced raising of HDL-C involves the recent obser-
vation that this drug can stimulate cholesterol efflux
from macrophages to primary HDL acceptors via the
ABCA1 membrane transporter, thereby entering the
RCT pathway (Fig. 7). Niacin activates ABCA1 via a
nuclear peroxisome proliferator-activated receptor-�-de-
pendent pathway (Rubic et al., 2004). In addition, nico-
tinic acid decreases HDL uptake by the liver (Sakai et
al., 2001) Whether such actions lead to local, intraplaque
depletion of cholesterol is conjectural, although this
mechanism is consistent with the capacity of nicotinic
acid to facilitate regression of coronary artery stenoses
as observed in the HATS trial (Brown et al., 2001).

Clearly then, reduction in lipolysis in adipose tissue
and in the NEFA supply to the liver are essential fea-
tures of the pharmacological action of nicotinic acid in
modifying the atherogenic lipid profile. As a result of
these effects, nicotinic acid effectively decreases plasma
levels not only of TG-rich lipoproteins, but also of small,
dense LDL and lipoprotein(a), and also raises levels of
HDL-C by a preferential decrease in CE flux to VLDL
driven by CETP (Fig. 7) (Chapman et al., 2004; McKen-
ney, 2004).

Importantly, niacin is presently the most effective
commercially available agent for increasing HDL-C; the
HDL-C-raising effect of niacin may reach 35% (Chap-
man et al., 2004). Meta-analysis of 30 randomized con-
trolled trials reveals that niacin increases HDL-C on
average by 16%; in parallel, niacin decreases plasma TG
typically by 20% (Birjmohun et al., 2005). The action of
niacin results in elevated plasma levels of both large and
small HDL (McKenney et al., 2001; Morgan et al., 2003).
In addition, niacin favorably modifies HDL composition,
preferentially increasing apoA-I in the form of large
HDL2-like, CE-rich particles (Sakai et al., 2001; Morgan
et al., 2003). Such increases in HDL levels of apoA-I and
CE at the expense of TG are consistent with the view
that niacin, by virtue of its action in normalizing HDL
structure and chemical composition but also in increas-
ing HDL particle numbers and concentrations, may nor-
malize deficient antiatherogenic functions of HDL par-
ticles in atherogenic dyslipidemia.

C. Fibrates

Fibrates are peroxisome proliferator-activated recep-
tor-� agonists that exert multiple effects on lipid and
fatty acid metabolism and that also modulate the ex-
pression of genes of cellular cholesterol homeostasis,
inflammation, and hemostasis (Steiner, 2005). Com-
pared with CETP inhibitors and niacin, the average
increase in HDL-C levels provided by fibrates is less
pronounced and equaled �10% in 53 randomized, con-
trolled trials (Birjmohun et al., 2005). The HDL-raising
effect of fibrates is accompanied by a pronounced de-
crease in plasma levels of TG-rich lipoproteins of up to

48%. As a result, fibrates normalize HDL lipid composi-
tion, decreasing HDL-TG and increasing CE.

An alteration in the HDL subfraction profile is an-
other central feature of fibrate therapy, which selec-
tively increases circulating levels of small HDL parti-
cles, apoA-I and apoA-II. Fenofibrate (Sasaki et al.,
2002; Ikewaki et al., 2004), bezafibrate (Miida et al.,
2000; Kazama et al., 2003; Ikewaki et al., 2005), and
gemfibrozil (Kahri et al., 1993) all selectively increase
small and/or medium HDL particle numbers in patients
with type 2 diabetes and in hypertriglyceridemic sub-
jects. Remarkably, the increase in small HDL induced
by fibrates may attain �168% in subjects with hypertri-
glyceridemia (Ikewaki et al., 2005). In addition, fenofi-
brate induces redistribution of PAF-AH from LDL to
HDL in dyslipidemic patients, thereby lowering the
proinflammatory potential of the enzyme (Tsimihodimos
et al., 2003). Mechanistically, these effects can be ac-
counted for by increased activities of both LPL, which
provides release of surface fragments from TG-rich li-
poproteins and their transfer to HDL during lipolysis,
and of HL, which facilitates conversion of large to small
HDL. Interestingly, plasma levels of small HDL3-C were
a powerful predictor of CV risk in insulin-resistant sub-
jects in the VA-HIT trial involving gemfibrozil treat-
ment in insulin-resistant subjects (Robins et al., 2001).
Fibrates may therefore be useful not only to induce an
increase in circulating levels of HDL but also to enhance
the functionality of small, dense HDL particles. The
findings of the FIELD trial involving treatment of type 2
diabetes with fenofibrate and its effects on CV morbitity
abd mortality are eagerly awaited (FIELD Study Inves-
tigators, 2004).

D. Statins

Statins are inhibitors of HMG-CoA reductase, whose
major effect is to efficaciously decrease plasma levels
of apoB-containing lipoproteins, primarily LDL, IDL,
VLDL, and VLDL remnants. In addition, statins induce
minor increases in HDL-C levels (by 5–10%) (Chong et
al., 2002), consistent with a reduction in CETP activity
(Guerin et al., 1995b, 2000b) and also with stimulation
of apoA-I production (Schaefer et al., 1999). As a conse-
quence, statins (atorvastatin and pravastatin) preferen-
tially increase levels of HDL particles of large and me-
dium size and �-mobility (Otvos et al., 2002; Schaefer et
al., 2002; Kazama et al., 2003; Soedamah-Muthu et al.,
2003).

Importantly, statins exert a number of pleiotropic ef-
fects, which include anti-inflammatory and antioxida-
tive activities. Antioxidative actions of statins involve
increases in the activity of HDL-associated enzymes,
such as that demonstrated for PON1 in type IIa hyper-
lipidemic patients treated with atorvastatin (Harangi et
al., 2004). Beneficial effects of statins on HDL function-
ality therefore appear to be mediated by a decrease in
CETP activity (Guerin et al., 1995b, 2000b), a reduction
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in LDL-C levels (i.e., the numbers of LDL particles to be
protected by HDL) (Chong et al., 2002), and a decrease
in systemic oxidative stress (Harangi et al., 2004; Ceri-
ello et al., 2005). Consistent with this mechanism, treat-
ment of CHD patients with simvastatin at 40 mg/day for
4 weeks potently enhanced HDL functionality, render-
ing HDL anti-inflammatory (Ansell et al., 2003).

E. Reconstituted High-Density Lipoprotein

rHDL typically consist of apoA-I and PL but may also
include apoE and other lipids. rHDL may provide an
innovative approach to the management of CV disease
by its ability to rapidly raise circulating HDL levels
upon intravenous injection and to act as primary choles-
terol acceptors at the arterial wall and in peripheral
tissues, thereby facilitating RCT (Nanjee et al., 1999).
Infusion of rHDL leads to inhibition of adhesion mole-
cule expression, attenuation of endotoxin-induced re-
lease of proinflammatory cytokines, reduced ROS gen-
eration, enhanced NO bioavailability, restored impaired
flow-mediated dilatation, and stabilized vulnerable
plaque in dyslipidemic subjects (Spieker et al., 2002;
Bisoendial et al., 2003) and/or in animal models (Cock-
erill et al., 2001a,b; Cuzzocrea et al., 2004; Nicholls et
al., 2005a,b). In addition, rHDL favorably affects the
distribution of antioxidative enzymes, particularly PAF-
AH, between HDL and other lipoproteins (Kujiraoka et
al., 2004).

Because of a potent cholesterol efflux capacity, rHDL
containing apoA-I Milano offer an especially promising
approach to treat CV disease (Sirtori et al., 1999), par-
ticularly under acute conditions at the diseased site,
namely the vulnerable, unstable atherosclerotic plaque
(Newton and Krause, 2002). Consistent with this notion,
5-weekly infusions of apoA-I Milano induced a 4.2%
reduction in plaque volume in patients with acute coro-
nary syndromes (Nissen et al., 2003). These promising
findings indicate outperformance of typical reductions in
plaque volume established after statin therapy, the most
efficient approach at present to delay progression of
atherosclerosis, e.g., 0.9% reduction after 18 months of
intensive therapy with 80 mg of atorvastatin in the
Reversal of Atherosclerosis with Aggressive Lipid Low-
ering (REVERSAL) study (Nissen et al., 2004; Birjmo-
hun et al., 2005). In addition, apoA-I Milano-containing
rHDL potently reduce atherosclerosis in atherosclerotic
rabbits (Ameli et al., 1994; Soma et al., 1995) and mice
(Shah et al., 1998, 2001). The regression of atheroscle-
rosis induced by rHDL is most probably related to accel-
erated cholesterol efflux from the arterial wall with en-
hanced RCT to the liver (Nissen et al., 2003); the
mechanistic relevance of other antiatherosclerotic activ-
ities of HDL to plaque regression remains unclear.

Importantly, injections of both apoA-I and apoA-I Mi-
lano result in the accumulation of small HDL particles
(Nanjee et al., 1999), which also predominate in subjects
with apoA-I Milano (Sirtori et al., 1999), thereby sug-

gesting that small apoA-I-containing HDL are particu-
larly cardioprotective. Selective elevation in circulating
concentrations of small HDL particles forms a basis for
another approach to raise plasma HDL levels which
involves reinfusion of HDL after selective delipidation
(Sacks et al., 2004).

F. Apolipoprotein-Mimetic Peptides

Oral or intravenous administration of small amphi-
pathic helical peptides that mimic HDL apolipoproteins
represents another promising strategy to raise circulat-
ing HDL levels and to attenuate atherosclerosis (Navab
et al., 2005b). Apolipoprotein-mimetic peptides typically
include those derived from apoA-I (Navab et al., 2005b)
but also from apoE (Gupta et al., 2005b) and apoJ (Na-
vab et al., 2005c). As a result of their beneficial impact
on HDL metabolism, apoA-I-mimetic peptides improve
HDL-mediated cholesterol efflux, activate cholesterol ef-
flux from macrophages, increase PON1 activity, convert
HDL from proinflammatory to anti-inflammatory parti-
cles, increase endothelial production of nitric oxide,
decrease endothelial production of superoxide, improve
vasodilation, induce vascular heme oxygenase and su-
peroxide dismutase, inhibit endotoxin-induced inflam-
matory responses, and reduce atherosclerosis in mice
and monkeys (Garber et al., 2001; Navab et al., 2002; J.
Ou et al., 2003; Z. Ou et al., 2003; Li et al., 2004; Navab
et al., 2004a; Gupta et al., 2005a; Kruger et al., 2005).

Whereas typical apoA-I mimetics and apoA-I itself
consist of L-amino acids, which are rapidly degraded in
the digestive system and need to by supplemented par-
enterally, one of these peptides, D-4F, consists of D-
amino acids, is not digested by mammalian enzymes,
and can be administrated orally (Navab et al., 2005b);
the latter represents an important advantage in the
development of apoA-I mimetics. Interestingly, covalent
binding to an apoA-I mimetic of an apoE fragment crit-
ical for binding to the LDL receptor endows the resulting
peptide with potent cholesterol-lowering capacity and
further increases its antiatherogenic activity (Gupta et
al., 2005b). Finally, orally administrated small zwitteri-
onic tetrapeptides, which are too small to form an am-
phipathic helix associate with HDL and display potent
antiatherosclerotic, antioxidative, and anti-inflamma-
tory activities in apoE�/� mice (Navab et al., 2005).

Significantly, apoA-I mimetics cause rapid formation
of small, lipid-poor pre-�-HDL, both in vivo when given
to animal models and in vitro when added to human
plasma (Navab et al., 2004a), consistent with a key
antiatherosclerotic role for such particles. The anti-in-
flammatory properties of apoA-I mimetic peptides ap-
pear to depend on subtle differences in the configuration
of the hydrophobic face of the peptides, which deter-
mines their ability to sequester pro-inflammatory oxi-
dized lipids (Datta et al., 2004; Epand et al., 2004).
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G. Combination Therapy

As distinct HDL-C raising agents function through
complementary mechanisms, their effects may be addi-
tive; hence, association of such medications has been
proposed. Another advantage of such combination ther-
apy involves the potential for use of lower doses of each
agent compared with their use in monotherapy to obtain
additive elevations in HDL-C levels; such an approach
may also lead to a reduction in adverse effects. Two
trials evaluating niacin combined with either a statin or
a bile acid sequestrant reported impressive HDL-C in-
creases ranging from 25 to 41% with an unprecedented
reduction in CV event rates ranging from 60 to 72%
(Brown et al., 1995, 2001). Such effects can be accounted
for by the additive benefit of concomitant reduction of
LDL-C and raising of HDL-C. These impressive reduc-
tion rates also correspond well to the estimated reduc-
tion rates based on the increase in HDL-C obtained in
these studies (Birjmohun et al., 2005) (i.e., 1% HDL-C
increase being associated with a 1–3% reduction in CV
events) (Robins et al., 2001). Furthermore, addition of
extended-release niacin to statin therapy slows the pro-
gression of carotid atherosclerosis (measured as IMT),
increases HDL-C (�21%), and decreases TG (�15%) and
non-HDL-C (�7%) levels among individuals with estab-
lished CHD and moderately low HDL-C (Taylor et al.,
2004). Finally, one clinically important feature of the
action of statins on HDL functionality involves their
synergism with a CETP inhibitor (Brousseau et al.,
2004, 2005) or apoA-I mimetic peptide (M. Navab et al.,
2005a).

VI. Conclusions

HDL particles possess potent biological activities, in-
cluding cellular cholesterol efflux capacity, antioxida-
tive, anti-inflammatory, antiapoptotic, antithrombotic,
anti-infectious, and vasodilatory activities, which pro-
vide protection from atherosclerosis or may even favor
plaque regression. Small, dense HDL afford potent pro-
tection of LDL against oxidative stress, possess pro-
nounced anti-inflammatory properties, and display high
cholesterol efflux capacity. The atheroprotective proper-
ties of HDL can, however, be compromised under con-
ditions associated with accelerated development of
atherosclerosis, such as in atherogenic low HDL-C dys-
lipidemias typical of metabolic diseases, including MetS
and type 2 diabetes. Such functional HDL deficiency is
intimately associated with alterations in HDL metabo-
lism and structure. Formation of small, dense HDL par-
ticles with attenuated antioxidative activity is mecha-
nistically related to HDL enrichment in TG and SAA,
depletion of CE and apoA-I, and covalent modification of
key HDL apolipoproteins. Deficiency of HDL function
may result in accelerated atherosclerosis; therapeutic
normalization of HDL function in terms of both the
quantity and quality of HDL particles, using CETP in-

hibitors, niacin, rHDL or other agents, may therefore
represent a novel therapeutic approach to attenuate ath-
erosclerosis in dyslipidemic subjects with metabolic dis-
ease. Induction of selective increases in the circulating
concentrations of HDL particles possessing normal an-
tiatherogenic activity is especially promising; more spe-
cifically, recent studies suggest that small, dense HDL3
particles represent a new therapeutic target in athero-
genic dyslipidemia, particularly in view of its intimate
association with a proinflammatory state.
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